The cross section for the elastic photoproduction of \r0\ mesons ($\gamma p \rightarrow \rho~0 p$) has been measured with the H1 detector at HERA for two average photon-proton centre-of-mass energies of 55 and 187GeV. TheFcenterline lower energy point was measured by observing directly the $\rho~{0}$ decay giving a cross section of $9.1\pm 0.9\,(\stat)\pm 2.5\,(\syst)\;\mu$b. The logarithmic slope parameter of the differential cross section, ${\rm d}\sigma/{\rm d}t$, is found to be $10.9 \pm 2.4\,(\stat) \pm 1.1\,(\syst)\;$GeV$~{-2}$. The \r0\ decay polar angular distribution is found to be consistent with s-channel helicity conservation. The higher energy cross section was determined from analysis of the lower part of the hadronic invariant mass spectrum of diffractive photoproduction and found to be $13.6\pm 0.8\,(\stat)\pm 2.4\,(\syst)\;\mu$b.
PI+ PI- cross section.
RHO0 cross section by selecting Mpipi to lie between 2Mpi and Mrho + 5width0.
No description provided.
Data are presented on exclusive ρ0 and ϕ production in deep inelastic muon scattering from a target consisting mainly of nitrogen. The ratio of the total cross sections for ρ0 and ϕ production is found to be 9∶(1.6±0.4) at 〈Q2〉=7.5 GeV2, consistent with theSU(3) prediction of 9∶2. Thet dependence for exclusive ρ0 production is found to become shallover asQ2 increases and, for largeQ2, thet dependence is typical of that for a hard scattering process. Furthermore, the ratio of the cross sections for coherent: incoherent production from nitrogen is found to decrease rapidly withQ2. Such behaviour indicates that even for exclusive vector meson production the virtual photon behaves predominantly as an electromagnetic probe.
No description provided.
No description provided.
No description provided.
A 7.5 GeV linearly polarized photon beam was used to study ϱ 0 production on d, n and p in the SLAC 82 inch bubble chamber. The production of ϱ 0 is found to proceed mainly via t -channel natural parity exchange and to conserve s -channel c.m.s. helicity for small t . The I = 1 contribution to the γ N → ϱ 0 t -channel amplitude is found to be small at 7.5 GeV.
ERRORS QUOTED INCLUDE BOTH STATISTICAL AND SYSTEMATIC UNCERTAINTIES.
THE FOURTH REACTION IS THE SUM OF THE FIRST THREE, NAMELY THE CLOSURE DIFFERENTIAL CROSS SECTION.
DIPION EVENTS IN THE RHO0 MASS REGION (600 TO 880 MEV).