Proton and antiproton total cross sections on protons and deuterons have been measured at 50, 100, 150, and 200 GeV/c. The proton cross sections rise with increasing momentum. Antiproton cross sections fall with increasing momentum, but the rate of fall decreases between 50 and 150 GeV/c, and from 150 to 200 GeV/c there is little change in cross section.
No description provided.
ANTIPARTICLE-PARTICLE CROSS SECTION DIFFERENCES.
Total cross sections of π± and K± on protons and deuterons have been measured at 50, 100, 150, and 200 GeV/c. All of the cross sections rise with increasing momentum.
No description provided.
PARTICLE-ANTIPARTICLE CROSS SECTION DIFFERENCES - SOME COMMON ERRORS CANCEL.
A partial-wave analysis of the (K ππ ) 0 system produced in the charge exchange reaction K − p →( K 0 π + π − ) n has been made in the mass range 1.04 ⩽ M (K ππ ) < 1.56 GeV c data at 8, 10 and 16 GeV/ c . It was found that in about 2 3 of the cases, the (K ππ ) 0 system is produced in states of unnatural spin-parity, namely J P = 0 − and 1 + ; the rest is in the natural spin-parity state J P = 2 + state is consistent with being all K ∗ (1420). The unnatural spin-parity states are produced mostly (∼ 80% of the events) by natural parity exchange. The facts that unnatural spin-parity states are produced in this non-diffractive channel, with J P = 1 + dominant, and that the exchange responsible for their production is mostly of natural parity, are similar to what was found for the charged (K ππ ) − system in the diffractive reaction K − p→(K ππ ) − p. However, the absolute value and the energy dependence of the cross sections are very different in the two cases.
CORRECTED FOR UNSEEN AK0 DECAY MODES.
ACTUALLY CROSS SECTIONS FOR PRODUCTION IN MASS REGION 1.04 < M(AK0 PI+ PI-) < 1.56 GEV IN THE STATES JP = 1+, 2+ AND 0- RESPECTIVELY.
The π − p→K 0 λ polarization has been measured at 5 GeV/ c in the range 0<− t <1.4 (GeV/ c ) 2 . The polarization is small for − t ⪅0.4 (GeV/ c ) 2 , becoming negative at the higher values of − t .
No description provided.
From a 98000-photograph exposure of the BNL 80-in. deuterium-filled chamber to a 14.6-GeV/c p¯ beam we have extracted those events that fit the channel p¯n→p¯pπ−. The cross section for this channel is measured to be 730 ± 50 μb. The cross section for the reaction p¯n→Δ¯−−(1238)p is determined to be 130 ± 30 μb. Evidence for target dissociation is presented. A comparison with the reaction π−n→π−pπ− at the same energy indicates agreement with factorization.
No description provided.
The π − p→n γ and π − p→n π ° differential cross sections have been measured for −0.9< cos θ ∗ <−0.45 (θ ∗ c.m. scattering angle) at 475 MeV/ c and 550 MeV/ c incident momenta. The π − p→n γ measurement is a good check of the detailed balance principle in the electromagnetic interactions of hadrons at these energies and is in good agreement with Walker's analysis. On the other hand the π − p→ π °n extrapolated values of 180° allows one to verify that the phases of the A 1 2 and A 3 2 amplitudes are equal.
No description provided.
No description provided.
BACKWARD CROSS SECTION ESTIMATED BY LEGENDRE POLYNOMIAL FIT.
The K − p → K 0 n polarization has been measured at 8 GeV/ c and for − t values ranging from 0 up tp 1.2 (GeV/ c ) 2 . A negative polarization has been found.
No description provided.
Differential cross sections for the process γ p → p η have been measuredd at c.m. angles of 28°, 35° and 42° at incident energies between 2 GeV and 2.8 GeV. Data from an earlier experiment below 2 GeV have been re-analysed and corrected. The whole set of data is compared with the form ( s − M 2 ) 2 d σ /d t , which fits data at higher energies. There is good agreement above 2 GeV, particularly at the largest angle, but strong departures below.
No description provided.
THESE DATA ARE A REANALYSIS OF THOSE REPORTED IN P. S. L. BOOTH ET AL., NP B25, 510 (1971). THE CORRECTED RESULTS ARE IN GENERAL ABOUT TWICE THE OLD VALUES.
Bubble chamber film of 10 GeV/ c K − p interactions was scanned automatically by an H.P.D. to look for small angle scatters in the | t |-range from 0.008 to 0.1 GeV 2 . Combining the 1800 events so obtained with 22 000 elastic events obtained from normal scanning (| t | > 0.06 GeV 2 ), the real part of the elastic scattering amplitude was found to be (+25 ± 10)% of the imaginary part. Evidence is found for a change in slope in the differential cross-section distribution, from 9.8 ± 0.6 GeV −2 in the | t |-range below 0.1 GeV 2 to 7.1 ± 0.2 GeV −2 in the range 0.12 < | t | ⩽ 0.4 GeV 2 .
No description provided.
THE 10 PCT ERROR IS THE RESULT OF A 5 PCT ERROR FROM THE FIT AND AN 8 PCT NORMALIZATION UNCERTAINTY.
No description provided.
Results are given from a study of 15 518 events of the reaction K + d → K + π − pp. The K + π − spin density matrix and the constraints imposed on it by positivity have been studied. Analyses of K + π − → K + π − elastic scattering have been carried out using methods developed by Estabrooks and Martin and Ochs and Wagner for the analogous case of ππ scattering. Results are found to be in agreement with earlier K π scattering studies using the reaction K + p → K + π − Δ ++ at much higher energies. The S-wave scattering length is found to be in agreement with the prediction of current algebra.
No description provided.