A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV.
The expected and observed upper limits at 95\% CL on the fiducial cross-section times branching ratio to two photons of a narrow-width ($\Gamma_{X}$ = 4 MeV) scalar resonance as a function of its mass $m_{X}$.
Diphoton invariant mass in the signal region using a 0.1 GeV binning.
Parametrization of the $C_{X}$ factor, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.
A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.
The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
A search for decays of pair-produced neutral long-lived particles (LLPs) is presented using 139 fb$^{-1}$ of proton-proton collision data collected by the ATLAS detector at the LHC in 2015-2018 at a centre-of-mass energy of 13 TeV. Dedicated techniques were developed for the reconstruction of displaced jets produced by LLPs decaying hadronically in the ATLAS hadronic calorimeter. Two search regions are defined for different LLP kinematic regimes. The observed numbers of events are consistent with the expected background, and limits for several benchmark signals are determined. For a SM Higgs boson with a mass of 125 GeV, branching ratios above 10% are excluded at 95% confidence level for values of $c$ times LLP mean proper lifetime in the range between 20 mm and 10 m depending on the model. Upper limits are also set on the cross-section times branching ratio for scalars with a mass of 60 GeV and for masses between 200 GeV and 1 TeV.
CalRatio triggers which were available during the LHC Run 2 data-taking, and corresponding integrated luminosity collected in each period. The high-E<sub>T</sub> CalRatio trigger with E<sub>T</sub> > 60 GeV was disabled in 2017 for instantaneous luminosities higher than 1.4 × 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>. Two versions of the low-E<sub>T</sub> CalRatio trigger were used, with slight differences in their algorithms. The details are reported in Section 4.
Trigger efficiency for simulated signal events as a function of the LLP p<sub>T</sub> for one of the low-E<sub>T</sub> signal samples for HLT CalRatio triggers seeded by the high-E<sub>T</sub> L1 triggers with E<sub>T</sub> thresholds of 60 GeV and 100 GeV and by the two versions of the low-E<sub>T</sub> L1 triggers. Only statistical uncertainties are shown.
Trigger efficiency for simulated signal events as a function of the LLP p<sub>T</sub> for one of the high-E<sub>T</sub> signal samples for HLT CalRatio triggers seeded by the high-E<sub>T</sub> L1 triggers with E<sub>T</sub> thresholds of 60 GeV and 100 GeV and by the two versions of the low-E<sub>T</sub> L1 triggers. Only statistical uncertainties are shown.
A search optimized for new heavy particles decaying to two $b$-quarks and produced in association with additional $b$-quarks is reported. The sensitivity is improved by $b$-tagging at least one lower-$p_{\rm{T}}$ jet in addition to the two highest-$p_{\rm{T}}$ jets. The data used in this search correspond to an integrated luminosity of 103 $\text{fb}^{-1}$ collected with a dedicated trijet trigger during the 2017 and 2018 $\sqrt{s} = 13$ TeV proton-proton collision runs with the ATLAS detector at the LHC. The search looks for resonant peaks in the $b$-tagged dijet invariant mass spectrum over a smoothly falling background. The background is estimated with an innovative data-driven method based on orthonormal functions. The observed $b$-tagged dijet invariant mass spectrum is compatible with the background-only hypothesis. Upper limits at 95% confidence level on a heavy vector-boson production cross section times branching ratio to a pair of $b$-quarks are derived.
Background estimate from the FD method with N=3 and data in the SR.
The observed (solid) and expected (dashed) 95% CL upper limits on the production of $Z' \to b\bar{b}$ in association with b-quarks.
Acceptance and Acceptance times efficiency for the LUV Z' model.
A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.
Relative systematic uncertainties in the estimated number of background events in the signal regions. In the lower part of the table, a breakdown of the total uncertainty into different categories is given. For the multi-bin SR, the breakdown refers to the integral over all three $p_{\text{T}}(\tau)$ bins. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.
Distributions of $m_{\text{T}2}(\tau_{1},\tau_{2})$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Distributions of $E_{\text{T}}^{\text{miss}}$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
A search for chargino$-$neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $\sqrt{s} = 13$ TeV $pp$ collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos ($\tilde\chi^\pm_1$) and neutralinos ($\tilde\chi^0_2$) are considered. For pure higgsino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair-production scenarios, exclusion limits at 95% confidence level are set on $\tilde\chi^0_2$ masses up to 210 GeV. Limits are also set for pure wino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair production, on $\tilde\chi^0_2$ masses up to 640 GeV for decays via on-shell $W$ and $Z$ bosons, up to 300 GeV for decays via off-shell $W$ and $Z$ bosons, and up to 190 GeV for decays via $W$ and Standard Model Higgs bosons.
This is the HEPData space for the ATLAS SUSY EWK three-lepton search. The full resolution figures can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-09/ The full statistical likelihoods have been provided for this analysis. They can be downloaded by clicking on the purple 'Resources' button above and selecting the 'Common Resources' category. <b>Region yields:</b> <ul display="inline-block"> <li><a href="?table=Tab%2012%20Onshell%20WZ%20Signal%20Region%20Yields%20Table">Tab 12 Onshell WZ Signal Region Yields Table</a> <li><a href="?table=Tab%2013%20Onshell%20Wh%20Signal%20Region%20Yields%20Table">Tab 13 Onshell Wh Signal Region Yields Table</a> <li><a href="?table=Tab%2014%20Offshell%20low-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 14 Offshell low-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2015%20Offshell%20high-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 15 Offshell high-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2020%20RJR%20Signal%20Region%20Yields%20Table">Tab 20 RJR Signal Region Yields Table</a> <li><a href="?table=Fig%204%20Onshell%20Control%20and%20Validation%20Region%20Yields">Fig 4 Onshell Control and Validation Region Yields</a> <li><a href="?table=Fig%208%20Offshell%20Control%20and%20Validation%20Region%20Yields">Fig 8 Offshell Control and Validation Region Yields</a> <li><a href="?table=Fig%2010%20Onshell%20WZ%20Signal%20Region%20Yields">Fig 10 Onshell WZ Signal Region Yields</a> <li><a href="?table=Fig%2011%20Onshell%20Wh%20Signal%20Region%20Yields">Fig 11 Onshell Wh Signal Region Yields</a> <li><a href="?table=Fig%2012%20Offshell%20Signal%20Region%20Yields">Fig 12 Offshell Signal Region Yields</a> <li><a href="?table=Fig%2018%20RJR%20Control%20and%20Validation%20Region%20Yields">Fig 18 RJR Control and Validation Region Yields</a> </ul> <b>Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs">Fig 16a WZ Exclusion: Wino-bino(+), Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Up">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Down">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp">Fig 16a WZ Exclusion: Wino-bino(+), Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Up">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Down">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Obs">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Exp">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs">Fig 17 Wh Exclusion, Obs</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Up">Fig 17 Wh Exclusion, Obs_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Down">Fig 17 Wh Exclusion, Obs_Down</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp">Fig 17 Wh Exclusion, Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Up">Fig 17 Wh Exclusion, Exp_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Down">Fig 17 Wh Exclusion, Exp_Down</a> </ul> <b>Upper limits:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%208a%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8a WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208b%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8b WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208c%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8c WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208d%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8d WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208e%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8e WZ Excl. Upper Limit Obs. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208f%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8f WZ Excl. Upper Limit Exp. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208g%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Higgsino%20($\Delta%20m$)">AuxFig 8g WZ Excl. Upper Limit Obs. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%208h%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Higgsino%20($\Delta%20m$)">AuxFig 8h WZ Excl. Upper Limit Exp. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%209a%20Wh%20Excl.%20Upper%20Limit%20Obs.">AuxFig 9a Wh Excl. Upper Limit Obs.</a> <li><a href="?table=AuxFig%209b%20Wh%20Excl.%20Upper%20Limit%20Exp.">AuxFig 9b Wh Excl. Upper Limit Exp.</a> </ul> <b>Model-independent discovery fits:</b> <ul display="inline-block"> <li><a href="?table=Tab%2018%20Onshell%20Discovery%20Fit%20Table">Tab 18 Onshell Discovery Fit Table</a> <li><a href="?table=Tab%2019%20Offshell%20Discovery%20Fit%20Table">Tab 19 Offshell Discovery Fit Table</a> <li><a href="?table=Tab%2021%20RJR%20Discovery%20Fit%20Table">Tab 21 RJR Discovery Fit Table</a> </ul> <b>Kinematic distributions:</b> <ul display="inline-block"> <li><a href="?table=Fig%2013a%20SR$_{DFOS}^{Wh}$-1%20($\Delta%20R_{OS,%20near}$)">Fig 13a SR$_{DFOS}^{Wh}$-1 ($\Delta R_{OS, near}$)</a> <li><a href="?table=Fig%2013b%20SR$_{DFOS}^{Wh}$-2%20(3rd%20Lep.%20$p_{T}$)">Fig 13b SR$_{DFOS}^{Wh}$-2 (3rd Lep. $p_{T}$)</a> <li><a href="?table=Fig%2013c%20SR$_{0j}^{WZ}$%20($E_{T}^{miss}$)">Fig 13c SR$_{0j}^{WZ}$ ($E_{T}^{miss}$)</a> <li><a href="?table=Fig%2013d%20SR$_{0j}^{WZ}$%20($m_{T}$)">Fig 13d SR$_{0j}^{WZ}$ ($m_{T}$)</a> <li><a href="?table=Fig%2014a%20SR$^{offWZ}_{LowETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14a SR$^{offWZ}_{LowETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014b%20SR$^{offWZ}_{LowETmiss}$-nj%20($m_{T}^{minmll}$)">Fig 14b SR$^{offWZ}_{LowETmiss}$-nj ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014c%20SR$^{offWZ}_{HighETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14c SR$^{offWZ}_{HighETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014d%20SR$^{offWZ}_{HighETmiss}$-nj%20($p_T^l%20\div%20E_T^{miss}$)">Fig 14d SR$^{offWZ}_{HighETmiss}$-nj ($p_T^l \div E_T^{miss}$)</a> <li><a href="?table=Fig%2020a%20RJR%20SR3$\ell$-Low%20($p_{T}^{\ell%201}$)">Fig 20a RJR SR3$\ell$-Low ($p_{T}^{\ell 1}$)</a> <li><a href="?table=Fig%2020b%20RJR%20SR3$\ell$-Low%20($H_{3,1}^{PP}$)">Fig 20b RJR SR3$\ell$-Low ($H_{3,1}^{PP}$)</a> <li><a href="?table=Fig%2020c%20RJR%20SR3$\ell$-ISR%20($p_{T~ISR}^{CM}$)">Fig 20c RJR SR3$\ell$-ISR ($p_{T~ISR}^{CM}$)</a> <li><a href="?table=Fig%2020d%20RJR%20SR3$\ell$-ISR%20($R_{ISR}$)">Fig 20d RJR SR3$\ell$-ISR ($R_{ISR}$)</a> </ul> <b>Cutflows:</b> <ul display="inline-block"> <li><a href="?table=AuxTab%205%20Cutflow:%20Onshell%20WZ">AuxTab 5 Cutflow: Onshell WZ</a> <li><a href="?table=AuxTab%206%20Cutflow:%20Onshell%20Wh">AuxTab 6 Cutflow: Onshell Wh</a> <li><a href="?table=AuxTab%207%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,235)">AuxTab 7 Cutflow: Offshell Wino-bino(+) (250,235)</a> <li><a href="?table=AuxTab%208%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(125,85)">AuxTab 8 Cutflow: Offshell Wino-bino(+) (125,85)</a> <li><a href="?table=AuxTab%209%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,170)">AuxTab 9 Cutflow: Offshell Wino-bino(+) (250,170)</a> <li><a href="?table=AuxTab%2010%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,235)">AuxTab 10 Cutflow: Offshell Wino-bino(-) (250,235)</a> <li><a href="?table=AuxTab%2011%20Cutflow:%20Offshell%20Wino-bino(-)%20(125,85)">AuxTab 11 Cutflow: Offshell Wino-bino(-) (125,85)</a> <li><a href="?table=AuxTab%2012%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,170)">AuxTab 12 Cutflow: Offshell Wino-bino(-) (250,170)</a> <li><a href="?table=AuxTab%2013%20Cutflow:%20Offshell%20Higgsino%20(120,100)">AuxTab 13 Cutflow: Offshell Higgsino (120,100)</a> <li><a href="?table=AuxTab%2014%20Cutflow:%20Offshell%20Higgsino%20(100,40)">AuxTab 14 Cutflow: Offshell Higgsino (100,40)</a> <li><a href="?table=AuxTab%2015%20Cutflow:%20Offshell%20Higgsino%20(185,125)">AuxTab 15 Cutflow: Offshell Higgsino (185,125)</a> </ul> <b>Acceptances and Efficiencies:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%2010a%20Acc:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10a Acc: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010b%20Eff:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10b Eff: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010c%20Acc:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10c Acc: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2010d%20Eff:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10d Eff: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2011a%20Acc:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11a Acc: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011b%20Eff:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11b Eff: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011c%20Acc:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11c Acc: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011d%20Eff:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11d Eff: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011e%20Acc:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11e Acc: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2011f%20Eff:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11f Eff: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2012a%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12a Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012b%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12b Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012c%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12c Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012d%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12d Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012e%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12e Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012f%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12f Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012g%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12g Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2012h%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12h Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013a%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13a Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013b%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13b Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013c%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13c Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013d%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13d Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013e%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13e Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013f%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13f Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013g%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13g Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013h%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13h Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014a%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14a Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014b%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14b Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014c%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14c Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014d%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14d Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014e%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14e Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014f%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14f Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014g%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14g Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014h%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14h Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> </ul>
Comparison of the observed data and expected SM background yields in the CRs (pre-fit) and VRs (post-fit) of the onshell $W\!Z$ and $W\!h$ selections. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the relative difference between the observed data and expected yields for the CRs and the significance of the difference for the VRs, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Comparison of the observed data and expected SM background yields in the CRs and VRs of the offshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
The $e^+e^-\to K^+K^-$ cross section and charged-kaon electromagnetic form factor are measured in the $e^+e^-$ center-of-mass energy range ($E$) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469 fb$^{-1}$ of data collected with the BABAR detector at the PEP-II $e^+e^-$ collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than $1/E^2$, and approaches the asymptotic QCD prediction. Production of the $K^+K^-$ final state through the $J/\psi$ and $\psi(2S)$ intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between single-photon and strong amplitudes in $J/\psi$ and $\psi(2S)\to K^+K^-$ decays. The values of the branching fractions measured in the reaction $e^+e^- \to K^+K^-$ are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about $\pm5\%$ for the $J/\psi$ meson and $\pm15\%$ for the $\psi(2S)$ meson.
The $K^+K^-$ invariant-mass interval ($M_{K^+K^-}$), number of selected events ($N_{\rm sig}$) after background subtraction, detection efficiency ($\varepsilon$), ISR luminosity ($L$), measured $e^+e^-\to K^+K^-$ cross section ($\sigma_{K^+K^-}$), and the charged-kaon form factor ($|F_K|$). For the number of events and cross section. For the form factor, we quote the combined uncertainty. For the mass interval 7.5 - 8.0 GeV/$c^2$, the 90$\%$ CL upper limits for the cross section and form factor are listed.
Two-particle azimuthal ($\Delta\phi$) and pseudorapidity ($\Delta\eta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both $\Delta\phi$ and $\Delta\eta$, and the ridge, narrow in $\Delta\phi$ but broad in $\Delta\eta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV, but is found to be substantially smaller at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV than at $\sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ \langle N_{\mathrm{part}}\rangle$). Measurements of the ridge are compared to models.
Parameterizations of the transverse momentum dependence of the reconstruction efficiency of charged particles in the TPC in various collision systems, energies and centrality bins for the track selection cuts used in this analysis.
The raw correlation in $\Delta\eta$ for di-hadron correlations for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-12% central \Au collisions for $|\Delta\phi|<$ 0.78 before and after the track merging correction is applied. The data have been reflected about $\Delta\eta$=0.
Sample correlations in $\Delta\eta$ ($|\Delta\phi|<$ 0.78) for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-80% Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-95% $d$+Au at $\sqrt{s_{NN}}$ = 200 GeV, 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV, 40-80% Au+Au at $\sqrt{s_{NN}}$ = 200 GeV, and 0-12% central Au+Au at $\sqrt{s_{NN}}$ = 200 GeV. The data are averaged between positive and negative $\Delta\eta$. 5% systematic uncertainty due to track reconstruction efficiency not listed below.