New particles with large masses that decay into hadronically interacting particles are predicted by many models of physics beyond the Standard Model. A search for a massive resonance that decays into pairs of dijet resonances is performed using 140 fb$^{-1}$ of proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Resonances are searched for in the invariant mass of the tetrajet system, and in the average invariant mass of the pair of dijet systems. A data-driven background estimate is obtained by fitting the tetrajet and dijet invariant mass distributions with a four-parameter dijet function and a search for local excesses from resonant production of dijet pairs is performed. No significant excess of events beyond the Standard Model expectation is observed, and upper limits are set on the production cross-sections of new physics scenarios.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.10 < $\alpha$ < 0.12.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.12 < $\alpha$ < 0.14.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.14 < $\alpha$ < 0.16.
A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton$-$proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the $WZ$+jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.
Observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
A search for leptoquark pair production decaying into $te^- \bar{t}e^+$ or $t\mu^- \bar{t}\mu^+$ in final states with multiple leptons is presented. The search is based on a dataset of $pp$ collisions at $\sqrt{s}$=13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139~fb$^{-1}$. Events are selected with two or more light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from a $b$-hadron. Four signal regions, with the requirement of at least three light leptons, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into $te^{-}$ ($t\mu^{-}$), the corresponding lower limit on the scalar mixed-generation leptoquark mass $m_{\mathrm{LQ}_{\mathrm{mix}}^{\mathrm{d}}}$ is at 1.58 (1.59) TeV and on the vector leptoquark mass $m_{\tilde{U}_1}$ at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang-Mills scenario.
Selection efficiency times acceptance summed over two signal regions for the scalar leptoquark signals as a function of $m_{\mathrm{LQ}_{mix}^{\mathrm{d}}}$, assuming B = 1.
Selection efficiency times acceptance summed over two signal regions for the vector leptoquark signals as a function of $m_{\tilde{U}_{1}}$, assuming B = 1 and Yang-Mills coupling scenario.
Summary of the observed and expected 95% CL upper limits on the cross section for $\mathrm{LQ}_{\mathrm{mix}}^{\mathrm{d}}$ pair production as a function of $m_{\mathrm{LQ}_{\mathrm{mix}}^{\mathrm{d}}}$ under the assumptions of B(LQ$\rightarrow te$)=1.
A search for leptoquarks decaying into the $b\tau$ final state is performed using Run 2 proton-proton collision data from the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$ at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector. The benchmark models considered in this search are vector leptoquarks with electric charge of 2/3e and scalar leptoquarks with an electric charge of 4/3e. No significant excess above the Standard Model prediction is observed, and 95% confidence level upper limits are set on the cross-section times branching fraction of leptoquarks decaying into $b\tau$. For the vector leptoquark production two models are considered: the Yang-Mills and Minimal coupling models. In the Yang-Mills (Minimal coupling) scenario, vector leptoquarks with a mass below 1.58 (1.35) TeV are excluded for a gauge coupling of 1.0 and below 2.05 (1.99) TeV for a gauge coupling of 2.5. In the case of scalar leptoquarks, masses below 1.28 TeV (1.53 TeV) are excluded for a Yukawa coupling of 1.0 (2.5). Finally, an interpretation of the results with minimal model dependence is performed for each of the signal region categories, and limits on the visible cross-section for beyond the Standard Model processes are provided.
Observed (solid line) and expected (dashed line) 95% CL upper limits on the cross-section of single plus non-resonant plus pair vector LQ production from the combination of the high b-jet $p_{T}$ signal region for the $\tau_\text{lep}\tau_\text{had}$ and $\tau_\text{had}\tau_\text{had}$ channels. [$U_1^{YM}$ model ($\kappa$ = 0) with $\lambda$ = 1.0]
Observed (solid line) and expected (dashed line) 95% CL upper limits on the cross-section of single plus non-resonant plus pair vector LQ production from the combination of the high b-jet $p_{T}$ signal region for the $\tau_\text{lep}\tau_\text{had}$ and $\tau_\text{had}\tau_\text{had}$ channels. [$U_1^{YM}$ model ($\kappa$ = 0) with $\lambda$ = 1.7]
Observed (solid line) and expected (dashed line) 95% CL upper limits on the cross-section of single plus non-resonant plus pair vector LQ production from the combination of the high b-jet $p_{T}$ signal region for the $\tau_\text{lep}\tau_\text{had}$ and $\tau_\text{had}\tau_\text{had}$ channels. [$U_1^{YM}$ model ($\kappa$ = 0) with $\lambda$ = 2.5]
A search for dark matter produced in association with a Higgs boson in final states with two hadronically decaying $\tau$-leptons and missing transverse momentum is presented. The analysis uses $139$ fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. No evidence for physics beyond the Standard Model is found. The results are interpreted in terms of a 2HDM+$a$ model. Exclusion limits at 95% confidence level are derived. Model-independent limits are also set on the visible cross section for processes beyond the Standard Model producing missing transverse momentum in association with a Higgs boson decaying to $\tau$-leptons.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>CLs and CLs+b values</b> <ul> <li><a href=?table=CLs_tanb_mA_grid_Expected>Expected CLs values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLs_tanb_mA_grid_Observed>Observed CLs values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLs_ma_mA_grid_HighmA_SR_Expected>Expected CLs values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLs_ma_mA_grid_HighmA_SR_Observed>Observed CLs values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLs_ma_mA_grid_LowmA_SR_Expected>Expected CLs values in mA vs ma grid, Low mA SR</a> <li><a href=?table=CLs_ma_mA_grid_LowmA_SR_Observed>Observed CLs values in mA vs ma grid, Low mA SR</a> <li><a href=?table=CLsplusb_tanb_mA_grid>CLs+b values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLsplusb_ma_mA_grid_HighmA_SR>CLs+b values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLsplusb_ma_mA_grid_LowmA_SR>CLs+b values in mA vs ma grid, Low mA SR</a> </ul> <b>Cutflow tables</b> <ul> <li><a href=?table=Cutflows_ggf_LowmA_SR>Low mA SR, ggF production</a> <li><a href=?table=Cutflows_ggf_HighmA_SR>High mA SR, ggF production</a> <li><a href=?table=Cutflows_bb_LowmA_SR>Low mA SR, bb production</a> <li><a href=?table=Cutflows_bb_HighmA_SR>High mA SR, bb production</a> </ul> <b>Kinematic Distributions</b> <ul> <li><a href=?table=KinDist_LowmA_SR>Low mA SR mTtau1+mTtau2 distribution</a> <li><a href=?table=KinDist_HighmA_SR>High mA SR mTtau1+mTtau2 distribution</a> </ul> <b>Limits</b> <ul> <li><a href=?table=Expected_95%_CL_exclusion_limit_mAma_grid>Expected 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Observed_95%_CL_exclusion_limit_mAma_grid>Observed 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Expected_pm1sigma_95%_CL_exclusion_limit_mAma_grid>Expected +-1 sigma 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Expected_95%_CL_exclusion_limit_mAtanB_grid>Expected 95% CL exclusion limit in mA vs tanB grid</a> <li><a href=?table=Observed_95%_CL_exclusion_limit_mAtanB_grid>Observed 95% CL exclusion limit in mA vs tanB grid</a> <li><a href=?table=Expected_pm1sigma_95%_CL_exclusion_limit_mAtanB_grid>Expected +-1 sigma 95% CL exclusion limit in tanB grid</a> </ul> <b>Acceptance and efficiency</b> <ul> <li><a href=?table=table1>Acceptance, High mA SR, mA vs tanB grid, 400-750 GeV, bb prod</a> <li><a href=?table=table2>Acceptance, High mA SR, mA vs tanB grid, >750 GeV, bb prod</a> <li><a href=?table=table3>Acceptance, Low mA SR, mA vs tanB grid, 100-250 GeV, bb prod</a> <li><a href=?table=table4>Acceptance, Low mA SR, mA vs tanB grid, 250-400 GeV, bb prod</a> <li><a href=?table=table5>Acceptance, Low mA SR, mA vs tanB grid, 400-550 GeV, bb prod</a> <li><a href=?table=table6>Acceptance, Low mA SR, mA vs tanB grid, >550 GeV, bb prod</a> <li><a href=?table=table7>Acceptance, High mA SR, mA vs ma grid, 400-750 GeV, bb prod</a> <li><a href=?table=table8>Acceptance, High mA SR, mA vs ma grid, >750 GeV, bb prod</a> <li><a href=?table=table9>Acceptance, Low mA SR, mA vs ma grid, 100-250 GeV, bb prod</a> <li><a href=?table=table10>Acceptance, Low mA SR, mA vs ma grid, 250-400 GeV, bb prod</a> <li><a href=?table=table11>Acceptance, Low mA SR, mA vs ma grid, 400-550 GeV, bb prod</a> <li><a href=?table=table12>Acceptance, Low mA SR, mA vs ma grid, >550 GeV, bb prod</a> <li><a href=?table=table13>Acceptance, High mA SR, mA vs tanB grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table14>Acceptance, High mA SR, mA vs tanB grid, >750 GeV, ggF prod</a> <li><a href=?table=table15>Acceptance, Low mA SR, mA vs tanB grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table16>Acceptance, Low mA SR, mA vs tanB grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table17>Acceptance, Low mA SR, mA vs tanB grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table18>Acceptance, Low mA SR, mA vs tanB grid, >550 GeV, ggF prod</a> <li><a href=?table=table19>Acceptance, High mA SR, mA vs ma grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table20>Acceptance, High mA SR, mA vs ma grid, >750 GeV, ggF prod</a> <li><a href=?table=table21>Acceptance, Low mA SR, mA vs ma grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table22>Acceptance, Low mA SR, mA vs ma grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table23>Acceptance, Low mA SR, mA vs ma grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table24>Acceptance, Low mA SR, mA vs ma grid, >550 GeV, ggF prod</a> <li><a href=?table=table25>Efficiency, High mA SR, mA vs tanB grid, 400-750 GeV, bb prod</a> <li><a href=?table=table26>Efficiency, High mA SR, mA vs tanB grid, >750 GeV, bb prod</a> <li><a href=?table=table27>Efficiency, Low mA SR, mA vs tanB grid, 100-250 GeV, bb prod</a> <li><a href=?table=table28>Efficiency, Low mA SR, mA vs tanB grid, 250-400 GeV, bb prod</a> <li><a href=?table=table29>Efficiency, Low mA SR, mA vs tanB grid, 400-550 GeV, bb prod</a> <li><a href=?table=table30>Efficiency, Low mA SR, mA vs tanB grid, >550 GeV, bb prod</a> <li><a href=?table=table31>Efficiency, High mA SR, mA vs ma grid, 400-750 GeV, bb prod</a> <li><a href=?table=table32>Efficiency, High mA SR, mA vs ma grid, >750 GeV, bb prod</a> <li><a href=?table=table33>Efficiency, Low mA SR, mA vs ma grid, 100-250 GeV, bb prod</a> <li><a href=?table=table34>Efficiency, Low mA SR, mA vs ma grid, 250-400 GeV, bb prod</a> <li><a href=?table=table35>Efficiency, Low mA SR, mA vs ma grid, 400-550 GeV, bb prod</a> <li><a href=?table=table36>Efficiency, Low mA SR, mA vs ma grid, >550 GeV, bb prod</a> <li><a href=?table=table37>Efficiency, High mA SR, mA vs tanB grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table38>Efficiency, High mA SR, mA vs tanB grid, >750 GeV, ggF prod</a> <li><a href=?table=table39>Efficiency, Low mA SR, mA vs tanB grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table40>Efficiency, Low mA SR, mA vs tanB grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table41>Efficiency, Low mA SR, mA vs tanB grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table42>Efficiency, Low mA SR, mA vs tanB grid, >550 GeV, ggF prod</a> <li><a href=?table=table43>Efficiency, High mA SR, mA vs ma grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table44>Efficiency, High mA SR, mA vs ma grid, >750 GeV, ggF prod</a> <li><a href=?table=table45>Efficiency, Low mA SR, mA vs ma grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table46>Efficiency, Low mA SR, mA vs ma grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table47>Efficiency, Low mA SR, mA vs ma grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table48>Efficiency, Low mA SR, mA vs ma grid, >550 GeV, ggF prod</a> </ul>
Expected CLs values in the Low mA SR, mA vs tanB signal grid.
Observed CLs values in the Low mA SR, mA vs tanB signal grid.
A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons ($e$ or $\mu$) with the same electric charge, or three leptons. The analysis uses 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and without $R$-parity conservation are considered. In topologies with intermediate states including either $Wh$ or $WZ$ pairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a natural $R$-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for an $R$-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.
Observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
positive one $\sigma$ observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
negative $\sigma$ variation of observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
A search for a new pseudoscalar $a$-boson produced in events with a top-quark pair, where the $a$-boson decays into a pair of muons, is performed using $\sqrt{s} = 13$ TeV $pp$ collision data collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of $139\, \mathrm{fb}^{-1}$. The search targets the final state where only one top quark decays to an electron or muon, resulting in a signature with three leptons $e\mu\mu$ and $\mu\mu\mu$. No significant excess of events above the Standard Model expectation is observed and upper limits are set on two signal models: $pp \rightarrow t\bar{t}a$ and $pp \rightarrow t\bar{t}$ with $t \rightarrow H^\pm b$, $H^\pm \rightarrow W^\pm a$, where $a\rightarrow\mu\mu$, in the mass ranges $15$ GeV $ < m_a < 72$ GeV and $120$ GeV $ \leq m_{H^{\pm}} \leq 160$ GeV.
Comparison between data and expected background for the on-$Z$-boson control region in the $e\mu\mu$ final state. The bins correspond to different jet and $b$-jet multiplicities. Rare background processes include $ZZ+$jets, $WWZ$, $WZZ$, $ZZZ$, and $t\bar{t}t\bar{t}$.
Comparison between data and expected background for the on-$Z$boson control region in the $\mu\mu\mu$ final state. The bins correspond to different jet and $b$-jet multiplicities. Rare background processes include $ZZ+$jets, $WWZ$, $WZZ$, $ZZZ$, and $t\bar{t}t\bar{t}$.
Di-muon mass distribution for the $e\mu\mu$ signal region for data and expected background. The expected signal distribution for $m_a = 35$ GeV is shown assuming $\sigma(t\bar{t}a)\times \text{Br}(a\rightarrow\mu\mu) = 4$ fb. Rare background processes include $ZZ+$jets, $WWZ$, $WZZ$, $ZZZ$, and $t\bar{t}t\bar{t}$.
A search is presented for displaced production of Higgs bosons or $Z$ bosons, originating from the decay of a neutral long-lived particle (LLP) and reconstructed in the decay modes $H\rightarrow \gamma\gamma$ and $Z\rightarrow ee$. The analysis uses the full Run 2 data set of proton$-$proton collisions delivered by the LHC at an energy of $\sqrt{s}=13$ TeV between 2015 and 2018 and recorded by the ATLAS detector, corresponding to an integrated luminosity of 139 fb$^{-1}$. Exploiting the capabilities of the ATLAS liquid argon calorimeter to precisely measure the arrival times and trajectories of electromagnetic objects, the analysis searches for the signature of pairs of photons or electrons which arise from a common displaced vertex and which arrive after some delay at the calorimeter. The results are interpreted in a gauge-mediated supersymmetry breaking model with pair-produced higgsinos that decay to LLPs, and each LLP subsequently decays into either a Higgs boson or a $Z$ boson. The final state includes at least two particles that escape direct detection, giving rise to missing transverse momentum. No significant excess is observed above the background expectation. The results are used to set upper limits on the cross section for higgsino pair production, up to a $\tilde\chi^0_1$ mass of 369 (704) GeV for decays with 100% branching ratio of $\tilde\chi^0_1$ to Higgs ($Z$) bosons for a $\tilde\chi^0_1$ lifetime of 2 ns. A model-independent limit is also set on the production of pairs of photons or electrons with a significant delay in arrival at the calorimeter.
Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.
Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.
Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.
This Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139 fb$^{-1}$ of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688 $\pm$ 23 (stat.) $^{+75}_{-71}$ (syst.) fb, to be compared with the standard model prediction of 515 $^{+36}_{-42}$ fb at next-to-leading order in QCD.
This table shows the values for $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)$ and $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)+\sigma_{t(\rightarrow l\nu b\gamma)q}$ obtained by a profile-likelihood fit in the fiducial parton-level phase space (defined in Table 1) and particle-level phase space (defined in Table 2), respectively.
Distribution of the reconstructed top-quark mass in the $W\gamma\,$CR before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions. The first and last bins include the underflow and overflow, respectively.
Distribution of the NN output in the 0fj$\,$SR in data and the expected contribution of the signal and background processes after the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions considering the correlations of the uncertainties as obtained by the fit.
Measurements of differential cross sections are presented for inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb$^{-1}$ of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region.
Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$ and photon isolation cone radius $R=0.4$.
Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<0.8$ and photon isolation cone radius $R=0.4$.
Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.8<|\eta^{\gamma}|<1.37$ and photon isolation cone radius $R=0.4$.