A measurement of the proton structure function $F_{\!2}(x,Q~2)$ is reported for momentum transfer squared $Q~2$ between 4.5 $GeV~2$ and 1600 $GeV~2$ and for Bjorken $x$ between $1.8\cdot10~{-4}$ and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that $F_{\!2}$ increases significantly with decreasing $x$, confirming our previous measurement made with one tenth of the data available in this analysis. The $Q~2$ dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to $F_{\!2}$.
No description provided.
No description provided.
No description provided.
This paper presents our first measurement of the F 2 structure function in neutral-current, deep inelastic scattering using the ZEUS detector at HERA, the ep colliding beam facility at DESY. The data correspond to an integrated luminosity of 24.7 nb −1 . Results are presented for data in range of Q 2 from 10 GeV 2 to 4700 GeV 2 and Bjorken x down to 3.0 × 10 −4 . The F 2 structure function increases rapidly as x decreases.
No description provided.
No description provided.
No description provided.
A measurement of the proton structure function F 2 ( x , Q 2 ) is presented with about 1000 neutral current deep inelastic scattering events for Bjorken x in the range x ⋍ 10 −2 – 10 −4 and Q 2 > 5 GeV 2 . The measurement is based on an integrated luminosity of 22.5 nb −1 recorded by the H1 detector in the first year of HERA operation. The structure function F 2 ( x , Q 2 ) shows a significant rise with decreasing x .
No description provided.
No description provided.
No description provided.
We present measurements of the hadronic photon structure functionF2γ(x), in twoQ2 ranges with mean values of 5.9 GeV2 and 14.7 GeV2. The data were taken by the OPAL experiment at LEP, with\(\sqrt s\) close to theZ0 mass and correspond to an integratede+e− luminosity of 44.8 pb−1. In the context of a QCD-based model we find the quark transverse momentum cutoff separating the vector meson dominance (VMD) and perturbative QCD regions to be 0.27±0.10 GeV. We confirm that there is a significant pointlike component of the photon when the probe photon hasQ2>4 GeV2. Our measurements extend to lower values ofx than any previous experiment, and no increase ofF2γ(x) is observed.
Additional overall systematic error 5.9% not included.
Additional overall systematic error 5.9% not included.
Results are presented on the ratios of the nucleon structure function in copper to deuterium from two separate experiments. The data confirm that the nucleon structure function,F2, is different for bound nucleons than for the quasi-free ones in the deuteron. The redistribution in the fraction of the nucleon's momentum carried by quarks is investigated and it is found that the data are compatible with no integral loss of quark momenta due to nuclear effects.
Results from the 'chariot' experiment.
Results from the 'addendum' experiment.
Merged 'chariot' and 'addendum' ratio.. Errors are combined statistics and systematics.
The photon structure function F 2 has been measured at average Q 2 values of 73,160 and 390 ( GeV c ) 2 . We compare the x dependence of the Q 2 = 73 ( GeV c ) 2 data with theoretical expectations based on QCD. In addition we present results on the Q 2 evolution of the structure function for the intermediate x range (0.3⩽ x ⩽0.8). The results are consistent with QCD.
X dependence at Q**2 = 73 GeV**2 for light quark data.
X dependence at Q**2 = 73 GeV**2 for total data.
Photon structure function F2 for total data.
Results are presented on the ratios of the deep inelastic muon-nucleus cross sections for carbon, copper and tin nuclei to those measured on deuterium. The data confirm that the structure functions of the nucleon measured in nuclei are different from those measured on quasi-free nucleons in deuterium. The kinematic range of the data is such that 〈 Q 2 〉 ∼ 5 GeV 2 at x ∼ 0.03, increasing to 〈 Q 2 〉 ∼ 35 GeV 2 for x ∼ 0.65. The measured cross section ratios are less than unity for x ≲ 0.05 and for 0.25 ≲ x < 0.7. The decrease of the ratio below unity for low x becomes larger as A increases as might be expected from nuclear shadowing. However, this occurs at relatively large values of Q 2 (∼ 5 GeV 2 ) indicating that such shadowing is of patrionic origin.
Q**2= 5.1,7.8,11.4,14.4,17.3,20.2,24.1,29.8,33.6 GEV**2.
Q**2= 4.4,8.4,13.5,17.9,21.1,24.4,29.5,34.0,40.4 GEV**2.
Q**2= 4.0,7.7,11.1,14.6,17.1,19.8,24.8,32.4 GEV**2.
We present a measurement of the photon structure functionF2γ in the reactionee→eeX forQ2 in the range 0.2
No description provided.
No description provided.
No description provided.
The proton structure function F 2 has been measured in the range 2.5 ⪕ Q 2 ⪕ 170 GeV 2 and 0.03 ⪕ x ⪕ 0.65 . Scaling violation is clearly seen in the data. Results of fits to leading-order QCD are presented, together with values of the scale-breaking parameter λ.
No description provided.
No description provided.
No description provided.
A measurement of the nucleon structure function F 2 on iron is presented. The data cover a kinematic range of 3.25 ⪕ Q 2 ⪕ 200 GeV 2 and 0.05 ⪕ x ⪕ 0.65 . The data clearly show scaling violation. Fits in leading-order QCD have been made and values for the scale breaking parameter λ are given.
No description provided.
No description provided.
No description provided.