The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor and transverse sphericity, each defined using the final-state charged particles' momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged particle transverse momentum, charged particle multiplicity and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data.
Normalized distributions of Tranverse Thrust for 4 ranges of leading particle PT.
Normalized distributions of Tranverse Thrust for 5 lower limit values of leading particle PT.
Normalized distributions of Tranverse Thrust Minor for 4 ranges of leading particle PT.
Distributions sensitive to the underlying event are studied in events containing one or more charged-particle jets produced in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector at the Large Hadron Collider (LHC). These measurements reflect 800 inverse microbarns of data taken during 2010. Jets are reconstructed using the antikt algorithm with radius parameter R varying between 0.2 and 1.0. Distributions of the charged-particle multiplicity, the scalar sum of the transverse momentum of charged particles, and the average charged-particle pT are measured as functions of pT^JET in regions transverse to and opposite the leading jet for 4 GeV < pT^JET < 100 GeV. In addition, the R-dependence of the mean values of these observables is studied. In the transverse region, both the multiplicity and the scalar sum of the transverse momentum at fixed pT^JET vary significantly with R, while the average charged-particle transverse momentum has a minimal dependence on R. Predictions from several Monte Carlo tunes have been compared to the data; the predictions from Pythia 6, based on tunes that have been determined using LHC data, show reasonable agreement with the data, including the dependence on R. Comparisons with other generators indicate that additional tuning of soft-QCD parameters is necessary for these generators. The measurements presented here provide a testing ground for further development of the Monte Carlo models.
Mean value of N(C=CHARGED) v jet PT for R=0.2.
Mean value of N(C=CHARGED) v jet PT for R=0.4.
Mean value of N(C=CHARGED) v jet PT for R=0.6.
The ATLAS experiment at the LHC has measured the centrality dependence of charged particle pseudorapidity distributions over |eta| < 2 in lead-lead collisions at a nucleon-nucleon centre-of-mass energy of sqrt(s_NN) = 2.76 TeV. In order to include particles with transverse momentum as low as 30 MeV, the data were recorded with the central solenoid magnet off. Charged particles were reconstructed with two algorithms (2-point 'tracklets' and full tracks) using information from the pixel detector only. The lead-lead collision centrality was characterized by the total transverse energy in the forward calorimeter in the range 3.2 < |eta| < 4.9. Measurements are presented of the per-event charged particle density distribution, dN_ch/deta, and the average charged particle multiplicity in the pseudorapidity interval |eta|<0.5 in several intervals of collision centrality. The results are compared to previous mid-rapidity measurements at the LHC and RHIC. The variation of the mid-rapidity charged particle yield per colliding nucleon pair with the number of participants is consistent with the lower sqrt(s_NN) results. The shape of the dN_ch/deta distribution is found to be independent of centrality within the systematic uncertainties of the measurement.
The measured charged particle density distributions as a fuinction of pseudorapidity in the centrality regions 0-10, 10-20, 20-30 and 30-40 %.
The measured charged particle density distributions as a fuinction of pseudorapidity in the centrality regions 40-50, 50-60, 60-70 and 70-80 %.
Mean values of the charged particle multiplicities in the pseudorapidiy range -0.5-0.5 as a function of centrality. N(C=PART), the number of participating nucleons in the collision, is also shown, determined from the muliplicity and ET of the event, with which it has been shown to be strongly correlated.
This Letter presents the first search for supersymmetry in final states containing one isolated electron or muon, jets, and missing transverse momentum from sqrt{s} = 7 TeV proton-proton collisions at the LHC. The data were recorded by the ATLAS experiment during 2010 and correspond to a total integrated luminosity of 35 pb-1. No excess above the standard model background expectation is observed. Limits are set on the parameters of the minimal supergravity framework, extending previous limits. For A_0 = 0 GeV, tan beta = 3, mu > 0 and for equal squark and gluino masses, gluino masses below 700 GeV are excluded at 95% confidence level.
Distribution of ET(C=MISSING) IN GEV for data and background MC calculation.
Distribution of MT IN GEV for data and background MC calculation.
Distribution of M(C=EFFECTIVE) IN GEV for data and background MC calculation.
Results are presented of a search for supersymmetric particles in events with large missing transverse momentum and at least one heavy flavour jet candidate in sqrt{s} = 7 TeV proton-proton collisions. In a data sample corresponding to an integrated luminosity of 35 pb-1 recorded by the ATLAS experiment at the Large Hadron Collider, no significant excess is observed with respect to the prediction for Standard Model processes. For R-parity conserving models in which sbottoms (stops) are the only squarks to appear in the gluino decay cascade, gluino masses below 590 GeV (520 GeV) are excluded at the 95% C.L. The results are also interpreted in an MSUGRA/CMSSM supersymmetry breaking scenario with tan(beta)=40 and in an SO(10) model framework.
Distribution of the effective mass for data and the SM expectation in the zero-lepton plus 3 jet channel.
Distribution of the missing ET for data and the SM expectation in the zero-lepton plus 3 jet channel.
Distribution of the effective mass for data and the SM expectation in the one-lepton plus 2 jet channel.
We present first measurements of charged and neutral particle-flow correlations in pp collisions using the ATLAS calorimeters. Data were collected in 2009 and 2010 at centre-of-mass energies of 900 GeV and 7 TeV. Events were selected using a minimum-bias trigger which required a charged particle in scintillation counters on either side of the interaction point. Particle flows, sensitive to the underlying event, are measured using clusters of energy in the ATLAS calorimeters, taking advantage of their fine granularity. No Monte Carlo generator used in this analysis can accurately describe the measurements. The results are independent of those based on charged particles measured by the ATLAS tracking systems and can be used to constrain the parameters of Monte Carlo generators.
900 GeV Particle density vs. Delta(phi) with leading particle pT > 1 GeV.
900 GeV Particle density vs. Delta(phi) with leading particle pT > 2 GeV.
900 GeV Particle density vs. Delta(phi) with leading particle pT > 3 GeV.
This Letter presents the first search for a heavy particle decaying into an e\mu final state in sqrt(s)=7 TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of 35/pb. No excess above the Standard Model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In an R-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming single coupling dominance and the couplings lambda'_{311}=0.11, lambda_{312}=0.07. In a lepton flavor violating model, a Z'-like vector boson with masses of 0.70 to 1.00 TeV and corresponding cross sections times branching ratios of 0.175 to 0.183 pb is excluded. These results extend to higher mass RPV sneutrinos and LFV Z's than previous constraints from the Tevatron.
Observed e-mu invariant mass distribution.
The observed 95% CL upper limits on the cross section for p p --> sneutrino x BR(sneutrino -> e-mu) as a function of the sneutrino mass.
The 95% CL upper limits on the Lambda311 coupling as a function of the sneutrino mass, for threee values of Lambda312.
Invariant mass distributions of jet pairs (dijets) produced in LHC proton-proton collisions at a centre-of-mass energy sqrt(s)=7 TeV have been studied using a data set corresponding to an integrated luminosity of 1.0 fb^-1 recorded in 2011 by ATLAS. Dijet masses up to ~4 TeV are observed in the data, and no evidence of resonance production over background is found. Limits are set at 95% CL for several new physics hypotheses: excited quarks are excluded for masses below 2.99 TeV, axigluons are excluded for masses below 3.32 TeV, and colour octet scalar resonances are excluded for masses below 1.92 TeV.
The observed di-jet mass distribution together with the background QCD prediction.
This paper describes a measurement of the W boson transverse momentum distribution using ATLAS pp collision data from the 2010 run of the LHC at sqrt(s) = 7 TeV, corresponding to an integrated luminosity of about 31 pb^-1. Events from both W -> e nu and W -> mu nu are used, and the transverse momentum of the W candidates is measured through the energy deposition in the calorimeter from the recoil of the W. The resulting distributions are unfolded to obtain the normalized differential cross sections as a function of the W boson transverse momentum. We present results for pTW < 300 GeV in the electron and muon channels as well as for their combination, and compare the combined results to the predictions of perturbative QCD and a selection of event generators.
The normalized, differential cross secton measured in the W to Electron decay channel for the three different PT definitions, Born, Dressed and Bare.
The normalized, differential cross secton measured in the W to Muon decay channel for the three different PT definitions, Born, Dressed and Bare.
The normalized, differential cross secton from the Muon and Electron decay channel Combined for the Born-level PT definition.
The jet fragmentation function and transverse profile for jets with 25 GeV < ptJet < 500 GeV and etaJet<1.2 produced in proton-proton collisions with a center-of-mass energy of 7 TeV are presented. The measurement is performed using data with an integrated luminosity of 36 pb^-1. Jets are reconstructed and their momentum measured using calorimetric information. The momenta of the charged particle constituents are measured using the tracking system. The distributions corrected for detector effects are compared with various Monte Carlo event generators and generator tunes. Several of these choices show good agreement with the measured fragmentation function. None of these choices reproduce both the transverse profile and fragmentation function over the full kinematic range of the measurement.
Charged particle fragmentation function in the jet-Pt range 25 TO 40 GeV.
Charged particle fragmentation function in the jet-Pt range 40 TO 60 GeV.
Charged particle fragmentation function in the jet-Pt range 60 TO 80 GeV.