The NA62 experiment at CERN has the capability to collect data in a beam-dump mode, where 400 GeV protons are dumped on an absorber. In this configuration, New Physics particles, including dark photons, dark scalars, and axion-like particles, may be produced in the absorber and decay in the instrumented volume beginning approximately 80 m downstream of the dump. A search for these particles decaying in flight to hadronic final states is reported, based on an analysis of a sample of $1.4 \times 10^{17}$ protons on dump collected in 2021. No evidence of a New Physics signal is observed, excluding new regions of parameter spaces of multiple models.
90% CL upper limit in dark photon coupling vs mass parameter space for combined di-lepton and hadronic final states, using bremsstrahlung production without the time-like form factor.
90% CL upper limit in dark photon coupling vs mass parameter space for combined di-lepton and hadronic final states, including mixing and bremsstrahlung production with a time-like form factor.
90% CL upper limit in dark scalar coupling vs mass parameter space for combined di-lepton and hadronic final states.
The measurements of the Higgs boson (H) production cross sections performed by the CMS Collaboration in the four-lepton (4$\ell$, $\ell$ = e, $\mu$) final state at a center-of-mass energy $\sqrt{s}$ = 13.6 TeV are presented. These measurements are based on data collected with the CMS detector at the CERN LHC in 2022, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. Cross sections are measured in a fiducial region closely matching the experimental acceptance, both inclusively and differentially, as a function of the transverse momentum and the absolute value of the rapidity of the four-lepton system. The H $\to$ ZZ $\to$ 4$\ell$ inclusive fiducial cross section is measured to be 2.89 $^{+0.53}_{-0.49}$ (stat) $^{+0.29}_{-0.21}$ (syst) fb, in agreement with the standard model expectation of 3.09 $^{+0.27}_{-0.24}$ fb.
Postfit reconstructed distribution of the 4-lepton invariant mass in the 70 < m4l < 350 GeV mass range.
Postfit reconstructed distribution of the 4-lepton invariant mass in the 105< m4l < 160 GeV mass range.
Measured inclusive fiducial H->ZZ->4l cross section in the various final states at 13.6 TeV.
A search for a heavy pseudoscalar Higgs boson, A, decaying to a 125 GeV Higgs boson h and a Z boson is presented. The h boson is identified via its decay to a pair of tau leptons, while the Z boson is identified via its decay to a pair of electrons or muons. The search targets the production of the A boson via the gluon-gluon fusion process, gg $\to$ A, and in association with bottom quarks, $\mathrm{b\bar{b}}$A. The analysis uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the CERN LHC in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. Constraints are set on the product of the cross sections of the A production mechanisms and the A $\to$ Zh decay branching fraction. The observed (expected) upper limit at 95% confidence level ranges from 0.049 (0.060) pb to 1.02 (0.79) pb for the gg $\to$ A process and from 0.053 (0.059) pb to 0.79 (0.61) pb for the $\text{b}\bar{\text{b}}$A process in the probed range of the A boson mass, $m_\text{A}$, from 225 GeV to 1 TeV. The results of the search are used to constrain parameters within the ${\text{M}_{\text{h,EFT}}^{\text{125}}}$ benchmark scenario of the minimal supersymmetric extension of the standard model. Values of $\tanβ$ below 2.2 are excluded in this scenario at 95% confidence level for all $m_\text{A}$ values in the range from 225 to 350 GeV.
Exclusion limits on ggA production.
Exclusion limits on ggA production.
Example description
A pioneering machine-learning-based flavor-tagging algorithm combining same-side and opposite-side tagging is used to obtain the equivalent of 27$\,$000 tagged B$^0_\mathrm{s}$$\to$ J/$\psi\, \phi$(1020) decays from pp collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 96.5 fb$^{-1}$. A time- and flavor-dependent angular analysis of the $\mu^+\mu^-$K$^+$K$^-$ final state is used to measure parameters of the $\mathrm{B}^0_\mathrm{s}$-$\overline{\mathrm{B}}^0_\mathrm{s}$ system. The weak phase is measured to be $\phi_\mathrm{s}$ = $-$73 $\pm$ 23 (stat) $\pm$ 7 (syst) mrad, which, combined with a $\sqrt{s}$ = 8 TeV CMS result, gives $\phi_\mathrm{s}$ = $-$74 $\pm$ 23 mrad. This value differs from zero by 3.2 standard deviations, providing evidence for $CP$ violation in B$^0_\mathrm{s}$$\to$ J/$\psi\,\phi$(1020) decays. All measured physics parameters are found to agree with standard model predictions where available.
Measured values and uncertainties of the main parameters of interest, as obtained from the analysis to data at 13 TeV.
Values and uncertainties of the physics parameters obtained from the combination of the CMS 8 TeV and 13 TeV results using the BLUE method. The uncertainty includes both statistical and systematic sources.
Matrix of the correlations of the statistical uncertainties between pairs of physics parameters, as obtained from the analysis to data at 13 TeV.
The first search for a heavy neutral spin-1 gauge boson (Z') with nonuniversal fermion couplings produced via vector boson fusion processes and decaying to tau leptons or W bosons is presented. The analysis is performed using LHC data at $\sqrt{s}$ = 13 TeV, collected from 2016 to 2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The data are consistent with the standard model predictions. Upper limits are set on the product of the cross section for production of the Z' boson and its branching fraction to $ττ$ or WW. The presence of a Z' boson decaying to $τ^+τ^-$ (W$^+$W$^-$) is excluded for masses up to 2.45 (1.60) TeV, depending on the Z' boson coupling to SM weak bosons, and assuming a Z' $\to$$τ^+τ^-$ (W$^+$W$^-$) branching fraction of 50%.
Cutflow for VBF Z' to tautau in ditau 2016 channel for different signal scenarios
Cutflow for VBF Z' to tautau in ditau 2017 channel for different signal scenarios
Cutflow for VBF Z' to tautau in ditau 2018 channel for different signal scenarios
Measurements of light-by-light scattering (LbL, $γγ$$\to$$γγ$) and the Breit-Wheeler process (BW, $γγ$$\to$$\mathrm{e^+e^-}$) are reported in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV. The data sample, corresponding to an integrated luminosity of 1.7 nb$^{-1}$, was collected by the CMS experiment at the CERN LHC in 2018. Events with an exclusively produced $γγ$ or $\mathrm{e^+e^-}$ pair with invariant masses $m^{γγ,\mathrm{ee}}$$>$ 5 GeV, along with other fiducial criteria, are selected. The measured BW fiducial production cross section, $σ_\text{fid}$($γγ$$\to$$\mathrm{e^+e^-}$) = 263.5 $\pm$ 1.8 (stat) $\pm$ 17.8 (syst) $μ$b, as well as the differential distributions for various kinematic observables, are in agreement with leading-order quantum electrodynamics predictions complemented with final-state photon radiation. The measured differential BW cross sections allow discriminating between different theoretical descriptions of the photon flux of the lead ion. In the LbL final state, 26 exclusive diphoton candidate events are observed compared with 12.0 $\pm$ 2.9 expected for the background. Combined with previous results, the observed significance of the LbL signal with respect to the background-only hypothesis is above five standard deviations. The measured fiducial LbL scattering cross section, $σ_\text{fid} (γγ$$\to$$γγ)$ = 107 $\pm$ 24 (stat) $\pm$ 13 (syst) nb, is in agreement with next-to-leading-order predictions. Limits on the production of axion-like particles coupled to photons are set over the mass range 5-100 GeV, including the most stringent limits to date in the range of 5-10 GeV.
Probability for different neutron multiplicity classes (0n, 1n, and Xn with X $\ge$1) measured on each ZDC side for the exclusive $e^{+}e^{-}$ events passing the fiducial phase space of Table 1. The measured ratios are compared with SUPERCHIC 4.2, STARLIGHT 3.13, and gamma-UPC 1.6 predictions.
Differential cross sections for exclusive dielectron production, in the fiducial phase space of Table 1, as functions of the pair $p_T$. Data are compared with SUPERCHIC + FSR(PHOTOS++), STARLIGHT + FSR(PY8), and gamma-UPC + FSR(PY8) predictions.
Differential cross sections for exclusive dielectron production, in the fiducial phase space of Table 1, as functions of the pair rapidity. Data are compared with SUPERCHIC + FSR(PHOTOS++), STARLIGHT + FSR(PY8), and gamma-UPC + FSR(PY8) predictions.
In the standard model of particle physics, the masses of the carriers of the weak interaction, the W and Z bosons, are uniquely related. Physics beyond the standard model could change this relationship through the effects of quantum loops of virtual particles, thus making it of great importance to measure these masses with the highest possible precision. Although the mass of the Z boson is known to the remarkable precision of 22 parts per million (2.0 MeV), the W boson mass is known much less precisely, given the difficulty of the measurement. A global fit to electroweak data, used to predict the W boson mass in the standard model, yields an uncertainty of 6 MeV. Reaching a comparable experimental precision would be a sensitive and fundamental test of the standard model. Furthermore, a precision measurement of the W boson mass performed by the CDF Collaboration at the Fermilab Tevatron has challenged the standard model by significantly disagreeing with the prediction of the global electroweak fit and the average of other $m_\mathrm{W}$ measurements. We report the first W boson mass measurement by the CMS Collaboration at the CERN LHC, based on a data sample collected in 2016 at the proton-proton collision energy of 13 TeV. The W boson mass is measured using a large sample of W$\to\mu\nu$ events via a highly granular binned maximum likelihood fit to the kinematic properties of the muons produced in the W$^{+}$ and W$^{-}$ boson decays. The significant in situ constraints of theoretical inputs and their corresponding uncertainties, together with an accurate determination of the experimental effects, lead to a precise W boson mass measurement, $m_\mathrm{W} =$ 80$\,$360.2 $\pm$ 9.9 MeV, in agreement with the standard model prediction.
Postfit pulls, constraints, and impacts (both nominal and 'global') for all nuisance parameters in the W boson mass fit, sorted by the absolute value of the nominal impact.
Postfit pulls, constraints, and impacts (both nominal and 'global') for all nuisance parameters in the W boson mass fit (charge difference), sorted by the absolute value of the nominal impact.
Postfit pulls, constraints, and impacts (both nominal and 'global') for all nuisance parameters in the W-like Z boson mass fit, sorted by the absolute value of the nominal impact.
A measurement of the ratio of the branching fractions, $R_{\tau/e} = B(W \to \tau \nu)/ B(W \to e \nu)$, is performed using a sample of $W$ bosons originating from top-quark decays to final states containing $\tau$-leptons or electrons. This measurement uses $pp$ collisions at $\sqrt{s}=13$ TeV, collected by the ATLAS experiment at the Large Hadron Collider during Run 2, corresponding to an integrated luminosity of 140 fb$^{-1}$. The $W \to \tau \nu_\tau$ (with $\tau \to e \nu_e \nu_\tau$) and $W \to e \nu_e$ decays are distinguished using the differences in the impact parameter distributions and transverse momentum spectra of the electrons. The measured ratio of branching fractions $R_{\tau/e} = 0.975 \pm 0.012 \textrm{(stat.)} \pm 0.020 \textrm{(syst.)}$, is consistent with the Standard Model assumption of lepton flavour universality in $W$-boson decays.
All the entries of this HEP data record are listed. Figure and Table numbers are the same as in the paper.
Number of events in the $\mu e$ channel from different sources, as estimated by the fit to the data, compared with the observed yield. Uncertainties include the statistical and systematic contribution. The uncertainty in the total expected number of events can be smaller than the uncertainties of the individual contributions because of correlations between them.
Number of events in the $e e$ channel from different sources, as estimated by the fit to the data, compared with the observed yield. Uncertainties include the statistical and systematic contribution. The uncertainty in the total expected number of events can be smaller than the uncertainties of the individual contributions because of correlations between them.
A search for heavy neutral gauge bosons (Z') decaying into a pair of tau leptons is performed in proton-proton collisions at $\sqrt{s}$ = 13 TeV at the CERN LHC. The data were collected with the CMS detector and correspond to an integrated luminosity of 138 fb$^{-1}$. The observations are found to be in agreement with the expectation from standard model processes. Limits at 95% confidence level are set on the product of the Z' production cross section and its branching fraction to tau lepton pairs for a range of Z' boson masses. For a narrow resonance in the sequential standard model scenario, a Z' boson with a mass below 3.5 TeV is excluded. This is the most stringent limit to date from this type of search.
Cutflow for signal samples in the hadronic di-tau channel for 2016 signal samples. Each entry other than the total is the relative efficiency with respect to the previous selection.
Cutflow for signal samples in the hadronic di-tau channel for 2017 signal samples. Each entry other than the total is the relative efficiency with respect to the previous selection.
Cutflow for signal samples in the hadronic di-tau channel for 2018 signal samples. Each entry other than the total is the relative efficiency with respect to the previous selection.
This paper presents a model-agnostic search for narrow resonances in the dijet final state in the mass range 1.8-6 TeV. The signal is assumed to produce jets with substructure atypical of jets initiated by light quarks or gluons, with minimal additional assumptions. Search regions are obtained by utilizing multivariate machine-learning methods to select jets with anomalous substructure. A collection of complementary anomaly detection methods - based on unsupervised, weakly supervised, and semisupervised algorithms - are used in order to maximize the sensitivity to unknown new physics signatures. These algorithms are applied to data corresponding to an integrated luminosity of 138 fb$^{-1}$, recorded by the CMS experiment at the LHC, at a center-of-mass energy of 13 TeV. No significant excesses above background expectations are seen. Exclusion limits are derived on the production cross section of benchmark signal models varying in resonance mass, jet mass, and jet substructure. Many of these signatures have not been previously sought, making several of the limits reported on the corresponding benchmark models the first ever. When compared to benchmark inclusive and substructure-based search strategies, the anomaly detection methods are found to significantly enhance the sensitivity to a variety of models.
Exclusion limits on the production cross section of the Q* -> q Wprime model from the different anomaly detection methods
Exclusion limits on the production cross section of the X -> Y Yprime model from the different anomaly detection methods
Exclusion limits on the production cross section of the Wprime -> Bprime t model from the different anomaly detection methods