Deep inelastic scattering with leading protons or large rapidity gaps at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 816 (2009) 1-61, 2009.
Inspire Record 804915 DOI 10.17182/hepdata.52860

The dissociation of virtual photons, $\gamma^{\star} p \to X p$, in events with a large rapidity gap between $X$ and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities $Q^2>2$ GeV$^2$ and $\gamma^{\star} p$ centre-of-mass energies $40<W<240$ GeV, with $M_X>2$ GeV, where $M_X$ is the mass of the hadronic final state, $X$. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of $t$, the squared four-momentum transfer at the proton vertex and $\Phi$, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of $Q^2$ and $\xpom$, the fraction of the proton's momentum carried by the diffractive exchange, as well as $\beta$, the Bjorken variable defined with respect to the diffractive exchange.

2 data tables match query

The reduced diffractive cross sections obtained from the LPS data as a function of X(NAME=POMERON) for Q**2 = 3.9 GeV**2 and ABS(T) = 0.19 to 0.55 GeV**2 for M(X) values of 3, 7, 15 and 30 GeV.

The reduced diffractive cross sections obtained from the LRG data as a function of X(NAME=POMERON) for Q**2 = 22 GeV**2 and M(X) values of 3, 6, 11, 19 and 32 GeV.


Measurement of Inclusive $\eta$ Production in $e^+ e^-$ Interactions Near Charm Threshold

Partridge, Richard ; Peck, C. ; Porter, F. ; et al.
Phys.Rev.Lett. 47 (1981) 760, 1981.
Inspire Record 165255 DOI 10.17182/hepdata.3280

We have measured the inclusive cross section for η production in e+e− interactions near charm threshold using the Crystal Ball detector. No pronounced structure in the energy dependence is observed. By comparing cross sections above and below charm threshold we obtain the limits (90% confidence limit): R(e+e−→FF¯X)RB(F→ηx)<0.15−0.32 (for Ec.m. from 4.0 to 4.5 GeV), RB(D→ηx)<0.13. Our results are inconsistent with a previous report of a large energy dependence of the η cross section ascribed to the crossing of the FF* and F*F* production thresholds.

1 data table match query

ENERGY SCAN DATA.


Precision measurement of the proton and deuteron spin structure functions g2 and asymmetries A(2).

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 553 (2003) 18-24, 2003.
Inspire Record 585675 DOI 10.17182/hepdata.27033

We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7 < Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets. Our measured g2 approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d2p and d2n are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.

6 data tables match query

Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 2.75 degrees and incident energy 29.1 GeV. Errors shown are statistical only.

Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 5.5 degrees and incident energy 29.1 GeV. Errors shown are statistical only.

Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 10.5 degrees and incident energy 29.1 GeV. Errors shown are statistical only.

More…

Precise determination of the spin structure function g(1) of the proton, deuteron and neutron.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Phys.Rev.D 75 (2007) 012007, 2007.
Inspire Record 726689 DOI 10.17182/hepdata.11211

Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 \leq x \leq 0.9$ and $0.18 $ GeV$^2$ $\leq Q^2 \leq 20$ GeV$^2$. The data were collected at the HERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x \leq 0.021$, a value of $0.330 \pm 0.011\mathrm{(theo.)}\pm0.025\mathrm{(exp.)}\pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.

1 data table match query

Correlation matrix for G1 for the P target in 15 X bins (Q**2 > 1 GeV**2), averaged over Q**2.


Threshold structure of the quasifree p + n --> d + eta reaction.

Calen, H. ; Dyring, J. ; Fransson, K. ; et al.
Phys.Rev.Lett. 80 (1998) 2069-2072, 1998.
Inspire Record 468434 DOI 10.17182/hepdata.19524

The quasifree p+n→d+η reaction cross section has been measured at the threshold using 1295 MeV protons in the CELSIUS storage ring and an internal cluster-jet deuterium target. The kinematics is chosen such that the target proton can be assumed to be a spectator. The Fermi momentum of the target neutron is used to extract the energy dependence of the cross section by reconstructing the kinematics on an event-by-event basis. The data cover excess energies from threshold to 10 MeV in the center of mass of the final dη system. Approaching the threshold the cross section is enhanced compared to what is expected from phase space. This behavior is typical for a strong final-state interaction.

1 data table match query

Cross section as a function of the C.M. excess energy.