Measurement of $K^+ K^-$ Production in $\gamma \gamma$ Collisions

The ARGUS collaboration Albrecht, H. ; Glaser, R. ; Harder, G. ; et al.
Z.Phys.C 48 (1990) 183-190, 1990.
Inspire Record 284561 DOI 10.17182/hepdata.15151

The production of charged kaon pairs in two-photon interactions has been studied with the ARGUS detector and the topological cross section has been measured. The γγ-widths and interference parameters have been determined for the tensor mesonsf2 (1270),a2 (1318) andf′2 (1525). The helicity structure assumed for the continuum contribution has a significant effect on the result. Upper limits have been obtained for the γγ-widths of the glueball candidate statesf2 (1720) andX (2230).

3 data tables match query

Data read from graph.. Errors are the square roots of the number of events.

Cross section allowing for spin components JM = 22,20,00. Data read from graph.. Additional overall systematic error 8.4%.

Cross section allowing for spin components JM = 22,00. Data read from graph.. Additional overall systematic error 8.4%.


Observation of Spin Parity 2+ Dominance in the Reaction $\gamma \gamma \to \rho^0 \rho^0$ Near Threshold

The ARGUS collaboration Albrecht, H. ; Ehrlichmann, H. ; Glaser, R. ; et al.
Z.Phys.C 50 (1991) 1-10, 1991.
Inspire Record 296187 DOI 10.17182/hepdata.45136

The reactionγγ→π+π−π+π− has been studied with the ARGUS detector. The rate in the invariant mass region below 1.8 GeV/c2 is found to be largely due toρ0ρ0 production. A spin-parity analysis shows a dominance of the partial wave (JP,Jz)=(2+, 2) with a small admixture fromJP=0+. The contribution of negative parity states is consistent with zero. The large ratio of cross sectionsσ(γγ→ρ0ρ0)/σ(γγ→ρ+ρ−)≃4, and the dominance of theJP=2+ wave in the reactionγγ→ρ0ρ0 is a signature consistent with the production of an exotic (I=2) resonance.

4 data tables match query

Statistical errors only.. Cross-section assuming phase-space distribution, as obtained by a 7 parameter fit.

Statistical errors only.. Cross-section assuming phase-space distribution, as obtained by a 7 parameter fit.

Partial wave components for the (JP,JZ) contribution to RHO0 RHO0 cross section.

More…

Measurement of Resonance Productions in the Reactions $\gamma \gamma \to \pi^0 \pi^0$ and $\gamma \gamma \to \pi^0 \eta$

The JADE collaboration Oest, T. ; Olsson, J. ; Allison, J. ; et al.
Z.Phys.C 47 (1990) 343-352, 1990.
Inspire Record 295180 DOI 10.17182/hepdata.15242

Resonance production in the γγ reactionse+e−→e+e+e−π0π0 ande+e−π0η has been studied with the JADE detector at PETRA. The decay widths into γγ of thef2(1270),a0(980) anda2(1320) were measured to be\(\Gamma _{\gamma \gamma } (f_2 (1270)) = 3.19 \pm 0.09_{ - 0.38}^{ + 0.22} \) Kev,Γλλ(a0(980))=0.28±0.04±0.10 KeV/BR(a0(980)→π0η) andΓλλ(a2(1320))=1.01±0.14±0.22KeV. For thef0(975) andf4(2050) upper limits of the widths were obtained,Γλλ(f0(975))<0.6 KeV, andΓλλ(f4(2050))<1.1 KeV, both at the 95% C.L. Assuming that the spin 0 background under thef2(1270) is small, thef2(1270) was found to be produced exclusively in a helicity 2 state. The helicity 0 contribution is <15% at the 95% C.L. The cross section forλλ→π0π0 in the mass range 2.0–3.5 GeV/c2 was measured for the first time. Since the cross section forλλ→π+π− is a factor ∼2 larger, ππ production in this range can be interpreted as taking place via isospin 0 production.

3 data tables match query

Data read from graph.. Event distributions uncorrected for angular acceptance and the efficiency with energy of the detector RE = GAMMA GAMMA --> PI0 PI0.

Data read from graph.

Data read from graph.. Event distributions uncorrected for angular acceptance and the efficiency with energy of the detector RE = GAMMA GAMMA --> PI0 PI0.


Photoproduction of Charged pi Mesons from Hydrogen and Deuterium in the Energy Range Between 250-MeV and 790-MeV

Fujii, T. ; Kondo, T. ; Takasaki, F. ; et al.
Nucl.Phys.B 120 (1977) 395-422, 1977.
Inspire Record 108476 DOI 10.17182/hepdata.8405

The differential cross sections for γ p→ π + n from hydrogen and the π − π + ratios from deuterium were measured at nine c.m. angles between 30° and 150° for laboratory photon energies between 260 and 800 MeV. A magnetic spectrometer with three layers of scintillation hodoscope was used to detect charged π mesons. The cross section for γ n→ π − p was obtained as a product of d σ d Ω (γ p →π + n ) and the π − π + ratio. The overall features in the cross sections of the two reactions, γ p→ π + n and γ n→ π − p, and in the ratios, π − π + , agree with predictions by Moorhouse, Oberlack and Rosenfeld, and Metcalf and Walker. An investigation of the possible existence of an isotensor current was made and a negative result was found. In detailed balance comparison with the new results on the inverse reaction π − p→ γ n, no apparent violation of time-reversal invariance was observed.

25 data tables match query

No description provided.

No description provided.

No description provided.

More…

Production of Four Prong Final States in Photon-photon Collisions

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.D 37 (1988) 28, 1988.
Inspire Record 261630 DOI 10.17182/hepdata.3824

Results are presented on the exclusive production of four-prong final states in photon-photon collisions from the TPC/Two-Gamma detector at the SLAC e+e− storage ring PEP. Measurement of dE/dx and momentum in the time-projection chamber (TPC) provides identification of the final states 2π+2π−, K+K−π+π−, and 2K+2K−. For two quasireal incident photons, both the 2π+2π− and K+K−π+π− cross sections show a steep rise from threshold to a peak value, followed by a decrease at higher mass. Cross sections for the production of the final states ρ0ρ0, ρ0π+π−, and φπ+π− are presented, together with upper limits for φρ0, φφ, and K*0K¯ *0. The ρ0ρ0 contribution dominates the four-pion cross section at low masses, but falls to nearly zero above 2 GeV. Such behavior is inconsistent with expectations from vector dominance but can be accommodated by four-quark resonance models or by t-channel factorization. Angular distributions for the part of the data dominated by ρ0ρ0 final states are consistent with the production of JP=2+ or 0+ resonances but also with isotropic (nonresonant) production. When one of the virtual photons has mass (mγ2=-Q2≠0), the four-pion cross section is still dominated by ρ0ρ0 at low final-state masses Wγγ and by 2π+2π− at higher mass. Further, the dependence of the cross section on Q2 becomes increasingly flat as Wγγ increases.

2 data tables match query

TAGGED DATA, RESULTS OBTAINED USING TRANSVERSE-TRANSVERSE LUMINOSITY ONLY. DATA FOR Q2=0 ARE FROM UNTAGGED SAMPLE, ERRORS DUE TO RELATIVE NORMALISATION OF THESE SAMPLES IS INCLUDED INTO ERRORS QUOTED.

UNTAGGED DATA.


Single pi+ electroproduction on the proton in the first and second resonance regions at 0.25-GeV**2 < Q**2 < 0.65-GeV**2 using CLAS.

The CLAS collaboration Egiyan, H. ; Aznauryan, I.G. ; Burkert, V.D. ; et al.
Phys.Rev.C 73 (2006) 025204, 2006.
Inspire Record 707883 DOI 10.17182/hepdata.6748

The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.

75 data tables match query

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.

More…

A Measurement of the Cross-Section for Four Pion Production in gamma gamma Collisions at SPEAR

Burke, D.L. ; Abrams, G.S. ; Alam, M.S. ; et al.
Phys.Lett.B 103 (1981) 153-156, 1981.
Inspire Record 165016 DOI 10.17182/hepdata.31168

We present a measurement of the cross section for the reaction e + e − → e + e − π + π − π + π − at SPEAR. This channel is found to be large and dominated by the process γγ → ϱ 0 ϱ 0 → π + π − π + π − . The cross section, which is small just above the four-pion threshold, exhibits a large enhancement near the ϱ 0 ϱ 0 threshold.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (THE QUOTED ERRORS INCLUDE VARIOUS SYSTEMATIC ERRORS ADDED QUADRATICALLY).


Production of $\pi^0 \pi^0$ and $\pi^0 \eta$ in Photon - Photon Collisions

Edwards, C. ; Partridge, Richard ; Peck, C. ; et al.
Phys.Lett.B 110 (1982) 82-86, 1982.
Inspire Record 168793 DOI 10.17182/hepdata.30959

We investigate the four-photon final state produced in γγ colissions. In the π 0 π 0 channel we observe f(1270) production with predominantly helicity 2 and measure a partial width Γ γγ 2.9 +0.6 −0.4 ± keV (independent of assumptions on the helicity). We observe A 2 (1310) production in the π 0 η channel and find a partial width Γ γγ = 0.77 ± 0.18 ± 0.27 KeV (assuming helicity 2). We give an upper limit for f ≈ ηη .

1 data table match query

Data read from graph.


Pion-nucleon total cross-sections from 0.4 to 0.90 gev/c

Davidson, D. ; Bowen, T. ; Caldwell, P.K. ; et al.
Phys.Rev.D 6 (1972) 1199-1202, 1972.
Inspire Record 73938 DOI 10.17182/hepdata.22266

The total cross sections of π± on protons in the momentum interval from 0.40 to 0.90 GeV/c have been measured with high relative precision. In this interval the statistical error varies between 10 and 20 μb. No new structure is observed.

1 data table match query

No description provided.


Pion and kaon pair production in photon-photon collisions

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.Lett. 57 (1986) 404, 1986.
Inspire Record 228072 DOI 10.17182/hepdata.20204

We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.

3 data tables match query

Data read from graph. Additional overall systematic error 20% not included.

Data read from graph. Additional overall systematic error 20% not included.

Data read from graph. Additional overall systematic error 20% not included.