Version 2
$\pi^0$ and $\eta$ meson production in proton-proton collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 263, 2018.
Inspire Record 1620477 DOI 10.17182/hepdata.79044

An invariant differential cross section measurement of inclusive $\pi^{0}$ and $\eta$ meson production at mid-rapidity in pp collisions at $\sqrt{s}=8$ TeV was carried out by the ALICE experiment at the LHC. The spectra of $\pi^{0}$ and $\eta$ mesons were measured in transverse momentum ranges of $0.3<p_{\rm T}<35$ GeV/$c$ and $0.5<p_{\rm T}<35$ GeV/$c$, respectively. Next-to-leading order perturbative QCD calculations using fragmentation functions DSS14 for the $\pi^{0}$ and AESSS for the $\eta$ overestimate the cross sections of both neutral mesons, although such calculations agree with the measured $\eta/\pi^{0}$ ratio within uncertainties. The results were also compared with PYTHIA~8.2 predictions for which the Monash~2013 tune yields the best agreement with the measured neutral meson spectra. The measurements confirm a universal behavior of the $\eta/\pi^{0}$ ratio seen for NA27, PHENIX and ALICE data for pp collisions from $\sqrt{s}=27.5$ GeV to $\sqrt{s}=8$ TeV within experimental uncertainties. A relation between the $\pi^{0}$ and $\eta$ production cross sections for pp collisions at $\sqrt{s}=8$ TeV is given by $m_{\rm T}$ scaling for $p_{\rm T}>3.5$ GeV/$c$. However, a deviation from this empirical scaling rule is observed for transverse momenta below $p_{\rm T}<3.5$ GeV/$c$ in the $\eta/\pi^0$ ratio with a significance of $6.2\sigma$.

16 data tables

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center of mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\eta$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

More…

A measurement of the Higgs boson mass in the diphoton decay channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 805 (2020) 135425, 2020.
Inspire Record 1780985 DOI 10.17182/hepdata.93362

A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9 fb$^{-1}$ of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a center-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be $m_\mathrm{H} =$ 125.78 $\pm$ 0.26 GeV. This is combined with a measurement of $m_\mathrm{H}$ already performed in the H $\to$ ZZ $\to$ 4$\ell$ decay channel using the same data set, giving $m_\mathrm{H} =$ 125.46 $\pm$ 0.16 GeV. This result, when further combined with an earlier measurement of $m_\mathrm{H}$ using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of $m_\mathrm{H} =$ 125.38 $\pm$ 0.14 GeV. This is currently the most precise measurement of the mass of the Higgs boson.

1 data table

A summary of the mass of the Higgs boson measured in the H to GG and the H to ZZ to 4l decay channel, and for the combination of the two. These measurements have been carried out with the Run 1 and 2016 datasets as well as with them combined.


Angular analysis of the decay B0 to K*0 mu mu from pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 753 (2016) 424-448, 2016.
Inspire Record 1385600 DOI 10.17182/hepdata.17057

The angular distributions and the differential branching fraction of the decay B0 to K*0(892) mu mu are studied using data corresponding to an integrated luminosity of 20.5 inverse femtobarns collected with the CMS detector at the LHC in pp collisions at sqrt(s) = 8 TeV. From 1430 signal decays, the forward-backward asymmetry of the muons, the K*0(892) longitudinal polarization fraction, and the differential branching fraction are determined as a function of the dimuon invariant mass squared. The measurements are among the most precise to date and are in good agreement with standard model predictions.

2 data tables

The measured values of signal yield, FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared. The (FL,AFB) correlation factors are also shown.

The measured values of FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared, combining the 7 TeV and 8 TeV results.


Charged-particle multiplicities in proton-proton collisions at $\sqrt{s}$ = 0.9 to 8 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 33, 2017.
Inspire Record 1394854 DOI 10.17182/hepdata.77011

A detailed study of pseudorapidity densities and multiplicity distributions of primary charged particles produced in proton-proton collisions, at $\sqrt{s} =$ 0.9, 2.36, 2.76, 7 and 8 TeV, in the pseudorapidity range $|\eta|<2$, was carried out using the ALICE detector. Measurements were obtained for three event classes: inelastic, non-single diffractive and events with at least one charged particle in the pseudorapidity interval $|\eta|<1$. The use of an improved track-counting algorithm combined with ALICE's measurements of diffractive processes allows a higher precision compared to our previous publications. A KNO scaling study was performed in the pseudorapidity intervals $|\eta|<$ 0.5, 1.0 and 1.5. The data are compared to other experimental results and to models as implemented in Monte Carlo event generators PHOJET and recent tunes of PYTHIA6, PYTHIA8 and EPOS.

75 data tables

Measured pseudorapidity dependence of $dN/d\eta$ for INEL collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of $dN/d\eta$ for NSD collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of $dN/d\eta$ for INEL>0 collisions at a centre-of-mass energy of 900 GeV.

More…

Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the LHC

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 97 (2018) 044912, 2018.
Inspire Record 1614482 DOI 10.17182/hepdata.82637

Charge-dependent azimuthal correlations of same- and opposite-sign pairs with respect to the second- and third-order event planes have been measured in pPb collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV and PbPb collisions at 5.02 TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three- and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum ($p_\mathrm{t}$) difference, and the $p_\mathrm{t}$ average of same- and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlators with respect to the second- and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a $v_2$-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the $v_2$-independent fraction of the three-particle correlator are estimated to be 13% for pPb and 7% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.

93 data tables

Three-particle correlation with respect to the 2nd order event plane from Pb-going side in pPb collisions.

Three-particle correlation with respect to the 2nd order event plane from p-going side in pPb collisions.

Three-particle correlation with respect to the 2nd order event plane in PbPb collisions.

More…

Direct photon production at low transverse momentum in proton-proton collisions at $\mathbf{\sqrt{s}=2.76}$ and 8 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.C 99 (2019) 024912, 2019.
Inspire Record 1664312 DOI 10.17182/hepdata.88395

Measurements of inclusive and direct photon production at mid-rapidity in pp collisions at $\sqrt{s}=2.76$ and 8 TeV are presented by the ALICE experiment at the LHC. The results are reported in transverse momentum ranges of $0.4<p_{T}<10$ GeV/$c$ and $0.3<p_{T}<16$ GeV/$c$, respectively. Photons are detected with the electromagnetic calorimeter~(EMCal) and via reconstruction of e$^+$e$^-$ pairs from conversions in the ALICE detector material using the central tracking system. For the final measurement of the inclusive photon spectra the results are combined in the overlapping $p_{T}$ interval of both methods. Direct photon spectra, or their upper limits at 90% C.L. are extracted using the direct photon excess ratio $R_{\gamma}$, which quantifies the ratio of inclusive photons over decay photons generated with a decay-photon simulation. An additional hybrid method, combining photons reconstructed from conversions with those identified in the EMCal, is used for the combination of the direct photon excess ratio $R_{\gamma}$, as well as the extraction of direct photon spectra or their upper limits. While no significant signal of direct photons is seen over the full $p_{T}$ range, $R_{\gamma}$ for $p_{T}>7$ GeV/$c$ is at least one $\sigma$ above unity and consistent with expectations from next-to-leading order pQCD calculations.

10 data tables

Double Ratio RGAMMA in inelastic pp collisions at center-of-mass energy 2.76 TeV. RGAMMA is the ratio of inclusive GAMMA to decay GAMMA.

Double Ratio RGAMMA in inelastic pp collisions at center-of-mass energy 8 TeV. RGAMMA is the ratio of inclusive GAMMA to decay GAMMA.

Invariant differential cross section of inclusive GAMMA produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the uncertainty of $\sigma_{MB}$ of 2.5% is not included in the systematic error. Values are given in the center of the PT bin.

More…

Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 082301, 2018.
Inspire Record 1670168 DOI 10.17182/hepdata.83911

The elliptic azimuthal anisotropy coefficient ($v_2$) is measured for charm (D$^0$) and strange (K$_\mathrm{S}^0$, $\Lambda$, $\Xi^-$, and $\Omega^-$) hadrons, using a data sample of pPb collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV. A significant positive $v_2$ signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity pPb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller $v_2$ than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV, also presented.

24 data tables

The elliptic flow, $v_{2}$, for $K^{0}_{S}$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow, $v_{2}$, for $\Lambda$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow, $v_{2}$, for $\Xi^{-}$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

More…

Energy dependence of forward-rapidity J/$\psi$ and $\psi(2S)$ production in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 392, 2017.
Inspire Record 1511865 DOI 10.17182/hepdata.77781

We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5<y<4$) as well as $\psi(2S)$-to-J/$\psi$ cross section ratios. These quantities are measured in pp collisions at center of mass energies $\sqrt{s}=5.02$ and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at $\sqrt{s}=2.76$, 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full $p_{\rm T}$ range, provided that both contributions are summed. In particular, it is found that for $p_{\rm T}>15$ GeV/$c$ the non-prompt contribution reaches up to 50% of the total charmonium yield.

14 data tables

Differential production cross sections of $J/\psi$ as a function of $p_{\rm T}$.

Differential production cross sections of $J/\psi$ as a function of rapidity.

Differential production cross sections of $\psi(2S)$ as a function of $p_{\rm T}$.

More…

Mass identified particle production in proton anti-proton collisions at s**(1/2) = 300-GeV, 540-GeV, 1000-GeV, and 1800-GeV

The E735 collaboration Alexopoulos, T. ; Allen, C. ; Anderson, E.W. ; et al.
Phys.Rev.D 48 (1993) 984-997, 1993.
Inspire Record 363171 DOI 10.17182/hepdata.22669

The yields and average transverse momenta of pions, kaons, and antiprotons produced at the Fermilab p¯p collider at s=300, 540, 1000, and 1800 GeV are presented and compared with data from the energies reached at the CERN collider. We also present data on the dependence of average transverse momentum 〈pt〉 and particle ratios as a function of charged particle density dNcdη; data for particle densities as high as six times the average value, corresponding to a Bjorken energy density 6 GeV/fm3, are reported. These data are relevant to the search for quark-gluon phase of QCD.

11 data tables

PT RANGE FROM 0 TO INFINITY.

PT RANGE FROM 0 TO INFINITY.

No description provided.

More…

Measurement of Higgs boson production in the diphoton decay channel in $pp$ collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 90 (2014) 112015, 2014.
Inspire Record 1312978 DOI 10.17182/hepdata.69473

A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 5.4 fb$^{-1}$ of proton-proton collisions data at $\sqrt{s}=7$ TeV and 20.3 fb$^{-1}$ at $\sqrt{s}=8$ TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be $\mu = 1.17 \pm 0.27$ at the value of the Higgs boson mass measured by ATLAS, $m_{H}$ = 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of $m_{H}$. They are found to be $\mu_{\mathrm{ggF}} = 1.32 \pm 0.38$, $\mu_{\mathrm{VBF}} = 0.8 \pm 0.7$, $\mu_{{WH}} = 1.0 \pm 1.6 $, $\mu_{{ZH}} = 0.1 ^{+3.7}_{-0.1} $, $\mu_{{t\bar{t}H}} = 1.6 ^{+2.7}_{-1.8} $, for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a $W$ or $Z$ boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.

3 data tables

The signal strength for a Higgs boson of mass mH = 125.4 GeV decaying via H->gammagamma as measured in the individual analysis categories, and the combined signal strength, for the combination of the 7 TeV and 8 TeV data. The VH dilepton category is not shown because with only two events in the combined sample, the fit results are not meaningful.

The signal strength for a Higgs boson of mass mH = 125.4 GeV decaying via H->gammagamma as measured in groups of categories sensitive to individual production modes, and the combined signal strength, for the combination of the 7 TeV and 8 TeV data.

Measured signal strengths, for a Higgs boson of mass mH = 125.4 GeV decaying via H->gammagamma, of the different Higgs boson production modes and the combined signal strength mu obtained with the combination of the 7 TeV and 8 TeV data.