Measurement of D+- and D0 production in deep inelastic scattering using a lifetime tag at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 63 (2009) 171-188, 2009.
Inspire Record 810112 DOI 10.17182/hepdata.51856

The production of D+- and D0 mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb-1. The measurements cover the kinematic range 5 < Q^2 < 1000 GeV^2, 0.02 < y < 0.7, 1.5 < p_T^D < 15 GeV and eta^D < 1.6. Combinatorial background to the D meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F2^ccbar, to the proton structure function, F2.

21 data tables

Production cross section for (D+ + D-) mesons.

Production cross section for (D0 + DBAR0) mesons not originating from D*+- decays.

Measured D+- cross section as a function of Q**2.

More…

Measurement of isolated photons accompanied by jets in deep inelastic ep scattering

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Lett.B 715 (2012) 88-97, 2012.
Inspire Record 1117891 DOI 10.17182/hepdata.60574

The production of isolated high-energy photons accompanied by jets has been measured in deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 326 pb^{-1}. Measurements were made for exchanged photon virtualities, Q^2, in the range 10 to 350 GeV^2. The photons were measured in the transverse-energy and pseudorapidity ranges 4 < ET^gamma < 15 GeV and -0.7 < eta^gamma < 0.9, and the jets were measured in the transverse-energy and pseudorapidity ranges 2.5 < ET^jet <35 GeV and -1.5 < eta^jet < 1.8. Differential cross sections are presented as functions of these quantities. Perturbative QCD predictions give a reasonable description of the shape of the measured cross sections over most of the kinematic range, but the absolute normalisation is typically in disagreement by 20-30%.

6 data tables

The measured differential cross section as a function of Q**2.

The measured differential cross section as a function of X.

The measured differential cross section as a function of the transverse energy of the photon.

More…

Inclusive-jet photoproduction at HERA and determination of alphas

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Nucl.Phys.B 864 (2012) 1-37, 2012.
Inspire Record 1116258 DOI 10.17182/hepdata.62400

Inclusive-jet cross sections have been measured in the reaction ep->e+jet+X for photon virtuality Q2 < 1 GeV2 and gamma-p centre-of-mass energies in the region 142 < W(gamma-p) < 293 GeV with the ZEUS detector at HERA using an integrated luminosity of 300 pb-1. Jets were identified using the kT, anti-kT or SIScone jet algorithms in the laboratory frame. Single-differential cross sections are presented as functions of the jet transverse energy, ETjet, and pseudorapidity, etajet, for jets with ETjet > 17 GeV and -1 < etajet < 2.5. In addition, measurements of double-differential inclusive-jet cross sections are presented as functions of ETjet in different regions of etajet. Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low ETjet and high etajet. The influence of non-perturbative effects not related to hadronisation was studied. Measurements of the ratios of cross sections using different jet algorithms are also presented; the measured ratios are well described by calculations including up to O(alphas2) terms. Values of alphas(Mz) were extracted from the measurements and the energy-scale dependence of the coupling was determined. The value of alphas(Mz) extracted from the measurements based on the kT jet algorithm is alphas(Mz) = 0.1206 +0.0023 -0.0022 (exp.) +0.0042 -0.0035 (th.); the results from the anti-kT and SIScone algorithms are compatible with this value and have a similar precision.

12 data tables

The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ET for jet ETARAP -1 TO 2.5 . The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.

The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ETARAP for jet ET > 17 GeV. The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.

The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ETARAP for jet ET > 21 GeV. The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.

More…

Diffractive photoproduction of dijetsin $ep$ collisions at HERA

The ZEUS collaboration Chekanov, Sergei ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 55 (2008) 177-191, 2008.
Inspire Record 763404 DOI 10.17182/hepdata.63789

Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb-1. The measurements were made in the kinematic range Q^2 < 1 GeV^2, 0.20 < y < 0.85 and x_pom < 0.025, where Q^2 is the photon virtuality, y is the inelasticity and x_pom is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E_T^jet, were required to satisfy E_T^jet > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta^jet < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton.

15 data tables

Differential cross section DSIG/DY for diffractive photoproduction of dijets as a function of Y.

Differential cross section DSIG/DM(P=5_6_7) for diffractive photoproduction of dijets as a function of M(P=5_6_7).

Differential cross section DSIG/DX(NAME=POMERON) for diffractive photoproduction of dijets as a function of X(NAME=POMERON).

More…

Inclusive dijet cross sections in neutral current deep inelastic scattering at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 70 (2010) 965-982, 2010.
Inspire Record 875006 DOI 10.17182/hepdata.71338

Single- and double-differential inclusive dijet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector using an integrated luminosity of 374 pb^-1. The measurement was performed at large values of the photon virtuality, Q^2, between 125 and 20000 GeV^2. The jets were reconstructed with the k_T cluster algorithm in the Breit reference frame and selected by requiring their transverse energies in the Breit frame, E_T,B^jet, to be larger than 8 GeV. In addition, the invariant mass of the dijet system, M_jj, was required to be greater than 20 GeV. The cross sections are described by the predictions of next-to-leading-order QCD.

18 data tables

The measured differential cross-sections $d\sigma/dQ^2$ for inclusive dijet production. The statistical, uncorrelated systematic and jet-energy-scale (ES) uncertainties are shown separately. The multiplicative corrections, ${C_{\rm{QED}}}$, which have been applied to the data and the corrections for hadronisation and ${Z^{0}}$ effects to be applied to the parton-level NLO QCD calculations, ${C_{\rm{hadr}}\cdot C_{\rm{Z^{0}}}}$, are shown in the last two columns.

Inclusive dijet cross-sections ${d\sigma/dx_{\rm{Bj}}}$. Other details as in the caption to Table 1.

Inclusive dijet cross-sections ${d\sigma/d\overline{E^{jet}_{T,B}}}$. Other details as in the caption to Table 1.

More…

Rapidity Gaps between Jets in Photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 369 (1996) 55-68, 1996.
Inspire Record 401492 DOI 10.17182/hepdata.44803

Photoproduction events which have two or more jets have been studied in the $W_{\gamma p}$ range 135GeV $< W_{\gamma p} <$ 280GeV with the ZEUS detector at HERA. A class of events is observed with little hadronic activity between the jets. The jets are separated by pseudorapidity intervals ($\Delta\eta$) of up to four units and have transverse energies greater than 6GeV. A gap is defined as the absence between the jets of particles with transverse energy greater than 300MeV. The fraction of events containing a gap is measured as a function of \deta. It decreases exponentially as expected for processes in which colour is exchanged between the jets, up to a value of $\Delta\eta \sim 3$, then reaches a constant value of about 0.1. The excess above the exponential fall-off can be interpreted as evidence for hard diffractive scattering via a strongly interacting colour singlet object.

2 data tables

No description provided.

No description provided.


Dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 348 (1995) 665-680, 1995.
Inspire Record 392980 DOI 10.17182/hepdata.44999

Dijet production by almost real photons has been studied at HERA with the ZEUS detector. Jets have been identified using the cone algorithm. A cut on xg, the fraction of the photon energy participating in the production of the two jets of highest transverse energy, is used to define cross sections sensitive to the parton distributions in the proton and in the photon. The dependence of the dijet cross sections on pseudorapidity has been measured for xg $\ge 0.75$ and xg $< 0.75$. The former is sensitive to the gluon momentum density in the proton. The latter is sensitive to the gluon in the photon. The cross sections are corrected for detector acceptance and compared to leading order QCD calculations.

2 data tables

Direct photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.

Resolved photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.


Diffractive hard photoproduction at HERA and evidence for the gluon content of the pomeron

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 356 (1995) 129-146, 1995.
Inspire Record 396314 DOI 10.17182/hepdata.44974

Inclusive jet cross sections for events with a large rapidity gap with respect to the proton direction from the reaction $ep \rightarrow jet \; + \; X$ with quasi-real photons have been measured with the ZEUS detector. The cross sections refer to jets with transverse energies $E_T~{jet}>8$GeV. The data show the characteristics of a diffractive process mediated by pomeron exchange. Assuming that the events are due to the exchange of a pomeron with partonic structure, the quark and gluon content of the pomeron is probed at a scale $\sim (E_T~{jet})~2$. A comparison of the measurements with model predictions based on QCD plus Regge phenomenology requires a contribution of partons with a hard momentum density in the pomeron. A combined analysis of the jet cross sections and recent ZEUS measurements of the diffractive structure function in deep inelastic scattering gives the first experimental evidence for the gluon content of the pomeron in diffractive hard scattering processes. The data indicate that between 30\% and 80\% of the momentum of the pomeron carried by partons is due to hard gluons.

2 data tables

No description provided.

No description provided.


Inclusive jet differential cross-sections in photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 342 (1995) 417-432, 1995.
Inspire Record 378838 DOI 10.17182/hepdata.45054

Inclusive jet differential cross sections for the reaction ep → jet + X at Q 2 below 4 GeV 2 have been measured with the ZEUS detector at HERA using an integrated luminosity of 0.55 pb −1 . These cross sections are given in the kinematic region 0.2 < y < 0.85, for jet pseudorapidities in the ep -laboratory range −1 < η jet < 2 and refer to jets at the hadron level with a cone radius of one unit in the η - θ plane. These results correspond to quasi-real photoproduction at centre-of-mass energies in the range 130–270 GeV and, approximately, for jet pseudorapidities in the interval −3 < η jet ( λp CMS) < 0. These measurements cover a new kinematic regime of the partonic structure of the photon, at typical scales up to ∼300 GeV 2 and photon fractional momenta down to x γ ∼ 10 −2 . Leading logarithm parton shower Monte Carlo calculations, which include both resolved and direct processes and use the predictions of currently available parametrisations of the photon parton distributions, describe in general the shape and magnitude of the measured η jet and E t jet distributions.

5 data tables

Second systematic error is uncertainty in the ET scale.

Second systematic error is uncertainty in the ET scale.

Second systematic error is uncertainty in the ET scale.

More…

D* production in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 407 (1997) 402-418, 1997.
Inspire Record 443964 DOI 10.17182/hepdata.44585

This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel $D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ $ (+ c.c.) has been used in the study. The $e^+p$ cross section for inclusive D^{*\pm} production with $5<Q^2<100 GeV^2$ and $y<0.7$ is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {$1.3<p_T(D^{*\pm})<9.0$ GeV and $| \eta(D^{*\pm}) |<1.5$}. Differential cross sections as functions of p_T(D^{*\pm}), $\eta(D^{*\pm}), W$ and $Q^2$ are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and $\eta$(D^{*\pm}), the charm contribution $F_2^{c\bar{c}}(x,Q^2)$ to the proton structure function is determined for Bjorken $x$ between 2 $\cdot$ 10$^{-4}$ and 5 $\cdot$ 10$^{-3}$.

11 data tables

No description provided.

Integrated charm cross sections in two Q**2 regions.

Distribution of the fractional momentum of the D* in the gamma*-p system.

More…