An experimental study was made of a ωπ 0 system produced in the charge exchange reaction π − p→ ωπ 0 n at 8.95 GeV/ c . The moment analysis was performed to study the spin-parity of the system in the mass region between 1.04 and 1.88 GeV. A clear peak of b 1 (1235) was observed in the J PC = 1 +− wave. No significant structure was seen in the 1 −− wave. An upper limit is obtained to be at most 1.9 μb for σ ( π − p→X 0 n)Br(X 0 → ωπ 0 ) for X 0 with a width of 130 MeV at 1480 MeV, where C(1480) meson with J PC = 1 −− has been reported in a φπ 0 decay mode.
Upper limit for pi- p --> X0 n (X0 --> omega pi0) with width 130 MeV at 1480 MeV where the C(1480) has been reported with JPC = 1-- in the phi pi0 decay mode.
The analyzing power for elastic pd scattering at 3.5 GeV has been measured in the region 0.1⩽−t⩽1.5 (GeV/ c ) 2 , using the polarized proton beam at KEK. The angular distribution shows a behavior similar to that in the lower energy region. It is reproduced fairly well by the predictions of a multiple scattering model based on the Glauber theory.
No description provided.
High statistics data of the ηππ system in π − p → ηπ + π − n were obtained. A partial wave analysis was performed in the mass region between 1.37 and 1.85 GeV. Resonant structures were observed in the IJ PC = 11 −− wave around 1.6 GeV and in 13 −− around 1.7 GeV. The structure in 11 −− was fitted with a single Breit-Wigner and also fitted with two Breit-Wigner's. The result suggests the possible existence of two vector resonances around 1.6 GeV. The structure in 13 −− is considered to be the π 3 (1690).
Result of single Breit Wigner fit around 1.6 GeV. Called here $M(1635).
Results of double Breit Wigner fit around 1.6 GeV. $M(1446) and $M(1701).
Result of Breit Wigner fit around 1.7 GeV.
Data of the ηπ − system were obtained in the reaction π − p → ηπ − p at 6.3 GeV/ c beam momentum. About 17 k events of ηπ − were collected in the mass range 0.8 ⩽ M ηπ - ⩽ 1.8 GeV/ c 2 and in the range of the momentum transfer squared 0.075 ⩽ | t ′| ⩽ 0.60 (GeV/ c ) 2 . A large forward-backward asymmetry was observed around 1.3 GeV/ c 2 in the Gottfried-Jackson frame of the ηπ − system. A partial wave analysis of the data was performed. A peak of the D + wave attributed to a 2 (1320) is clearly seen. An enhancement is observed around 1.3 GeV/ c 2 in the P + wave.
No description provided.
No description provided.
Analyzing powers have been measured for the quasi-elastic ( p → , 2p ) scattering in carbon and copper using a KEK 3.5 GeV polarized proton beam. The present result shows relatively larger analyzing powers compared with the ones obtained for carbon in the energy region 0.52–2.8 GeV at Saclay (Saturne). The t -dependence for C and Cu ( p → , 2p ) is compared with a calculation based on the relativistic impulse approximation and is reproduced well.
No description provided.
No description provided.
Differential cross sections of proton Compton scattering have been measured in the angular range between 50° and 130° at incident photon energies from 900 MeV to 1150 MeV. A sharp dip in the angular distribution found by a Bonn group at 110° in the photon energy region around 900 MeV is not observed in the present measurement. A new dip-bump structure is found at photon energies above 1050 MeV, which is similar to that for pion-nucleon scattering.
No description provided.
No description provided.
No description provided.
Large-angle cross sections for γd→π0d are systematically measured in the photon energy range between 500 and 1000 MeV. A good fit is obtained by use of a Glauber-model calculation which includes the dibaryon resonances F33(2.26) and G41(2.51), but the fit has an unusual nature in the role of resonance and nonresonance contributions.
Liquid hydrogen target for final calibration.
LIQUID DEUTERIUM TARGET.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.