Differential cross sections for Compton scattering from the deuteron were measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at nominal laboratory angles of $45^\circ$, $125^\circ$, and $135^\circ$. Tagged photons were scattered from liquid deuterium and detected in three NaI spectrometers. By comparing the data with theoretical calculations in the framework of a one-boson-exchange potential model, the sum and difference of the isospin-averaged nucleon polarizabilities, $\alpha_N + \beta_N = 17.4 \pm 3.7$ and $\alpha_N - \beta_N = 6.4 \pm 2.4$ (in units of $10^{-4}$ fm$^3$), have been determined. By combining the latter with the global-averaged value for $\alpha_p - \beta_p$ and using the predictions of the Baldin sum rule for the sum of the nucleon polarizabilities, we have obtained values for the neutron electric and magnetic polarizabilities of $\alpha_n= 8.8 \pm 2.4$(total) $\pm 3.0$(model) and $\beta_n = 6.5 \mp 2.4$(total) $\mp 3.0$(model), respectively.
Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.6 MeV.
Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.9 MeV.
Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 55.9 MeV.
From a 150 000-photograph exposure, we analyzed the p¯d→p¯psn reaction, ps denoting a proton stopping in the deuterium-filled bubble chamber. Choosing kinematical regions in which the ps can be recognized as a spectator, we studied the p¯n→p¯n process. From the observed p¯n diffraction peak, we obtained an exponential slope for the four-momentum-transfer distribution of bn=9.4±0.8 (GeV/c)−2, the elastic p¯n cross section being estimated as σe(p¯n)=16.5±2.4 mb. The present values in conjunction with those obtained at ≈1.8 and 3.5 GeV/c show that in this region bn and σe(p¯n) decrease with increasing incident momentum. We compared our data with the reactions np→np at ≈5.4 GeV/c and p¯p→p¯p at 5.7 GeV/c. The p¯n→p¯n and np→np differential cross sections exhibit a crossover phenomenon while p¯p and p¯n elastic scattering show an isospin dependence. We also analyzed the p¯d→p¯psn reaction by means of the Glauber formalism.
No description provided.
No description provided.
The differential cross sections of the proton Compton scattering around the second resonance have been measured at a c.m. angle of 90° for incident photon energies between 450 MeV and 950 MeV in steps of 50 MeV, and at an angle of 60° for energies between 600 MeV and 800 MeV. The results show that the peak of the 2nd resonance agrees with that of the pion photoproduction process. We also calculated the proton Compton scattering based on unitarity and fixed- t dispersion relations. The calculation describes well the data of the cross section and the recoil proton polarization.
No description provided.
No description provided.
None
'1'. '2'. '3'.
We have measured elastic scattering of 5 and 6 GeV photons on hydrogen and deuterium in the angular range 10–50 mrad. On hydrogen we observe a forward diffraction peak with a slope of 8.5 (GeV/ c ) −2 . The extrapolated forward cross sections in units μ b/(GeV/ c ) 2 are 0.82 ± 0.04 at 5 GeV and 0.79 ± 0.04 at 6 GeV. They are consistent with the calculated amplitudes obtained from total cross section measurements via the optical theorem and dispersion relations assuming negligible contributions of spin-dependent amplitudes. Deuterium cross sections show a transition from coherent scattering at low | t | to incoherent scattering at higher | t |. They indicate that the isovector exchange amplitude a 1 is very small compared to the isoscalar a 0 . We obtain |a 1 | 2 /|a 0 +a 1 | 2 =0.13±0.09 , Re (a 0 a ∗ 1 )/|a 0 +a 1 | 2 =0.0±0.03, at 5 GeV , |a 1 | 2 /|a 0 +a 1 | 2 =−0.12±0.15 , Re (a 0 a ∗ 1 )/|a 0 +a 1 | 2 =0.10±0.04, at 6 GeV .
No description provided.
No description provided.
In the tagged-photon beam at Fermilab, differential cross sections were measured for the elastic scattering of photons on a liquid-hydrogen target. The diffractive forward peak was measured for photon energies between 50 and 130 GeV and |t| values between 0.07 and 1.20 (GeV/c)2. The shape of the diffraction peak is similar to that seen in π−p scattering. The magnitude is that predicted by the optical theorem.
No description provided.
No description provided.
No description provided.
None
No description provided.
Compton-scattering cross sections from hydrogen (γp→γp) and from deuterium have been measured at four-momentum transfer t in the range 0.014<~−t<~0.17 GeV2 and photon energies of 8 and 16 GeV. Fits to our proton data of the form dσdt=AeBt give B≈7.8 GeV−2 and an intercept A which is in agreement with the optical point. Both coherent scattering from deuterons and incoherent scattering from neutrons and protons are seen from deuterium. A small difference between the neutron and proton cross sections is seen, indicating the presence of about a 3% isovector t-channel exchange amplitude in addition to the predominant isoscalar amplitude. The vector-dominance model predicts lower cross sections (by at least 20%) for both the hydrogen and deuterium cases.
Axis error includes +- 3/3 contribution (SUBTRACTIONS WERE MADE FOR THE REACTIONS GAMMA P --> PI0 N, ETA N, OMEGA N AND PI0 DELTA(1232)).
Axis error includes +- 3/3 contribution (SUBTRACTIONS WERE MADE FOR THE REACTIONS GAMMA P --> PI0 N, ETA N, OMEGA N AND PI0 DELTA(1232)).
Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.
Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 25 GeV**2.
Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 35 GeV**2.
Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 45 GeV**2.
None
292+-7 MUB - CORRECTED VALUE FOR FIRST REACTION (SLOW PROTONS). M(P 4PI) <= 3.5 GEV FOR REACTIONS WITH FOUR PIONS.
No description provided.
No description provided.