A study on the Bose-Einstein correlations for triplets of same-sign pions is presented. The analysis is performed using proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 7 TeV, recorded by the LHCb experiment, corresponding to an integrated luminosity of 1.0 fb$^{-1}$. For the first time, the results are interpreted in the core-halo model. The parameters of the model are determined in regions of charged-particle multiplicity. This measurement provides insight into the nature of hadronisation in terms of coherence, showing a coherent emission of pions.
Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 5-10.
Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 11-20.
Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 21-60.
The LHCb collaboration presents a novel suite of heavy-flavour jet substructure measurements at forward rapidity in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The jet mass is a perturbatively calculable probe of the virtuality of hard-scattered quarks and gluons, connecting small-distance quantum chromodynamics (QCD) with long-distance experimental measurement. It becomes dominated by nonperturbative corrections at small values, presenting an excellent test of QCD across a broad range of energies. Measuring heavy-flavour jet mass with a theoretically unambiguous flavour definition for the first time probes the gluon splitting mechanism for heavy-flavour production and pushes tests of perturbative QCD to unprecedented theoretical precision. Utilising the soft drop jet-grooming technique to access the perturbative jet core further enhances constraints on first-principles theory. Measurements of the jet mass for jets containing fully reconstructed $B^\pm$ hadrons are reported with and without grooming. These results offer unparalleled tests of quark flavour and mass dependence in QCD and provide a baseline for future studies of heavy-flavour jet quenching in heavy-ion collisions.
Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $10 < p_{\textrm{T,jet}} < 12$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.
Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $12 < p_{\textrm{T,jet}} < 15$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.
Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $15 < p_{\textrm{T,jet}} < 20$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.
A comprehensive study of the local and nonlocal amplitudes contributing to the decay $B^0\rightarrow K^{*0}(\to K^+\pi^-) \mu^+\mu^-$ is performed by analysing the phase-space distribution of the decay products. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 8.4fb$^{-1}$ collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient $C_9$, responsible for vector dimuon currents, exhibits a $2.1\sigma$ deviation from the Standard Model expectation. The Wilson Coefficients $C_{10}$, $C_{9}'$ and $C_{10}'$ are all in better agreement than $C_{9}$ with the Standard Model and the global significance is at the level of $1.5\sigma$. The model used also accounts for nonlocal contributions from $B^{0}\to K^{*0}\left[\tau^+\tau^-\to \mu^+\mu^-\right]$ rescattering, resulting in the first direct measurement of the $b s\tau\tau$ vector effective-coupling $C_{9\tau}$.
Signal parameter results. See Table 1 in README.pdf in the attached resources for an explicit mapping between text-based parameter names and their symbolic representations in the main paper.
Total covariance matrix including both statistical and systematic effects. See Sec. 5 in the main paper for a description of the dominant systematic uncertainties. See Table 1 in README.pdf in the attached resources for an explicit mapping between text-based parameter names and their symbolic representations in the main paper.
Statistical covariance matrix. See Table 1 in README.pdf in the attached resources for an explicit mapping between text-based parameter names and their symbolic representations in the main paper.
The production of $W$ and $Z$ bosons in association with jets is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 $\pm$ 0.02 fb$^{-1}$. The $W$ boson is identified using its decay to a muon and a neutrino, while the $Z$ boson is identified through its decay to a muon pair. Total cross-sections are measured and combined into charge ratios, asymmetries, and ratios of $W+$jet and $Z$+jet production cross-sections. Differential measurements are also performed as a function of both boson and jet kinematic variables. All results are in agreement with Standard Model predictions.
The total cross sections for $Wj$ and $Z^0 j$ production, obtained by summing over the measured cross-sections in bins of $\eta^{\mathrm{jet}}$.
The ratios of the $Wj$, $W^+j$ and $W^-j$ cross-sections to the $Z^0 j$ cross-section, and the ratio of the $W^+j$ to $W^-j$ cross-sections.
The asymmetry of $W^+j$ and $W^-j$ production, given by $A(Wj)\equiv (\sigma_{W^+j}-\sigma_{W^-j})/(\sigma_{W^+j}+\sigma_{W^-j})$.
An angular analysis of the $B^{0}\rightarrow K^{*0}(\rightarrow K^{+}\pi^{-})\mu^{+}\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\,{\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\!P$-averaged observables and $C\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1<q^{2}<6.0\mathrm{\,Ge\kern -0.1em V}^{2}/c^{4}$, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of $C\!P$-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions.
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit.
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
CP-asymmetric angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
Measurements are presented of electroweak boson production using data from $pp$ collisions at a centre-of-mass energy of $\sqrt{s} = 8\mathrm{\,Te\kern -0.1em V}$. The analysis is based on an integrated luminosity of $2.0\mathrm{\,fb}^{-1}$ recorded with the LHCb detector. The bosons are identified in the $W\rightarrow\mu\nu$ and $Z\rightarrow\mu^{+}\mu^{-}$ decay channels. The cross-sections are measured for muons in the pseudorapidity range $2.0 < \eta < 4.5$, with transverse momenta $p_{\rm T} > 20{\mathrm{\,Ge\kern -0.1em V\!/}c}$ and, in the case of the $Z$ boson, a dimuon mass within $60 < M_{\mu^{+}\mu^{-}} < 120{\mathrm{\,Ge\kern -0.1em V\!/}c^{2}}$. The results are \begin{align*} \sigma_{W^{+}\rightarrow\mu^{+}\nu} &= 1093.6 \pm 2.1 \pm 7.2 \pm 10.9 \pm 12.7{\rm \,pb} \, , \sigma_{W^{-}\rightarrow\mu^{-}\bar{\nu}} &= \phantom{0}818.4 \pm 1.9 \pm 5.0 \pm \phantom{0}7.0 \pm \phantom{0}9.5{\rm \,pb} \, , \sigma_{Z\rightarrow\mu^{+}\mu^{-}} &= \phantom{00}95.0 \pm 0.3 \pm 0.7 \pm \phantom{0}1.1 \pm \phantom{0}1.1{\rm \,pb} \, , \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. The evolution of the $W$ and $Z$ boson cross-sections with centre-of-mass energy is studied using previously reported measurements with $1.0\mathrm{\,fb}^{-1}$ of data at $7\mathrm{\,Te\kern -0.1em V}$. Differential distributions are also presented. Results are in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics.
Inclusive cross-section for $W^+$ and $W^-$ boson production in bins of muon pseudorapidity. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of rapidity. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of transverse momentum. The uncertainties are statistical, systematic, beam and luminosity.
Associated production of bottomonia and open charm hadrons in $pp$ collisions at $\sqrt{s}=7$ and $8$TeV is observed using data corresponding to an integrated luminosity of 3$fb^{-1}$ accumulated with the LHCb detector. The observation of five combinations, $\Upsilon(1S)D^0$, $\Upsilon(2S)D^0$, $\Upsilon(1S)D^+$, $\Upsilon(2S)D^+$ and $\Upsilon(1S)D^+_{s}$, is reported. Production cross-sections are measured for $\Upsilon(1S)D^0$ and $\Upsilon(1S)D^+$ pairs in the forward region. The measured cross-sections and the differential distributions indicate the dominance of double parton scattering as the main production mechanism. This allows a precise measurement of the effective cross-section for double parton scattering.
Normalized differential cross-section $\frac{1}{\sigma}\frac{ \mathrm{d}\sigma(\Upsilon(1S)D^0)}{\mathrm{d} p_T(\Upsilon(1S))}$ for $2<y(\Upsilon(1S))<4.5$, $2<y(D^0)<4.5$, $p_T(D^0)>1$ GeV/$c$. Only statistical uncertainties are quoted as systematic uncertainties are found to be negligible. The distribution is normalized to unity.
Normalized differential cross-section $\frac{1}{\sigma}\frac{ \mathrm{d}\sigma(\Upsilon(1S)D^+)}{\mathrm{d} p_T(\Upsilon(1S))}$ for $2<y(\Upsilon(1S))<4.5$, $2<y(D^+)<4.5$, $p_T(D^+)>1$ GeV/$c$. Only statistical uncertainties are quoted as systematic uncertainties are found to be negligible. The distribution is normalized to unity.
Normalized differential cross-section $\frac{1}{\sigma}\frac{ \mathrm{d}\sigma(\Upsilon(1S)D^0)}{\mathrm{d} p_T(D^0)}$ for $2<y(\Upsilon(1S))<4.5$, $2<y(D^0)<4.5$, $p_T(D^0)>1$ GeV/$c$. Only statistical uncertainties are quoted as systematic uncertainties are found to be negligible. The distribution is normalized to unity.
Production cross-sections of prompt charm mesons are measured with the first data from $pp$ collisions at the LHC at a centre-of-mass energy of $13\,\mathrm{TeV}$. The data sample corresponds to an integrated luminosity of $4.98 \pm 0.19\,\mathrm{pb}^{-1}$ collected by the LHCb experiment. The production cross-sections of $D^{0}$, $D^{+}$, $D_{s}^{+}$, and $D^{*+}$ mesons are measured in bins of charm meson transverse momentum, $p_{\mathrm{T}}$, and rapidity, $y$, and cover the range $0 < p_{\mathrm{T}} < 15\,\mathrm{GeV}/c$ and $2.0 < y < 4.5$. The inclusive cross-sections for the four mesons, including charge conjugation, within the range of $1 < p_{\mathrm{T}} < 8\,\mathrm{GeV}/c$ are found to be \begin{equation} \sigma(pp \to D^{0} X) = 2072 \pm 2 \pm 124\,\mu\mathrm{b}\\ \sigma(pp \to D^{+} X) = 834 \pm 2 \pm \phantom{1}78\,\mu\mathrm{b}\\ \sigma(pp \to D_{s}^{+} X) = 353 \pm 9 \pm \phantom{1}76\,\mu\mathrm{b}\\ \sigma(pp \to D^{*+} X) = 784 \pm 4 \pm \phantom{1}87\,\mu\mathrm{b} \end{equation} where the uncertainties are due to statistical and systematic uncertainties, respectively.
Differential production cross-sections for prompt $D^{0} + \bar{D}^{0}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.
Differential production cross-sections for prompt $D^{+} + D^{-}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.
Differential production cross-sections for prompt $D_{s}^{+} + D_{s}^{-}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.
The forward-backward charge asymmetry for the process $q\bar{q} \rightarrow Z/\gamma^{\ast} \rightarrow \mu^{+}\mu^{-}$ is measured as a function of the invariant mass of the dimuon system. Measurements are performed using proton proton collision data collected with the LHCb detector at $\sqrt{s} = 7$ and 8\tev, corresponding to integrated luminosities of $1$fb$^{-1}$ and $2$fb$^{-1}$ respectively. Within the Standard Model the results constrain the effective electroweak mixing angle to be $$sin^{2}\theta_{W}^{eff} = 0.23142 \pm 0.00073 \pm 0.00052 \pm 0.00056 $$ where the first uncertainty is statistical, the second systematic and the third theoretical. This result is in agreement with the current world average, and is one of the most precise determinations at hadron colliders to date.
Values for $A_{\rm{FB}}$ with the statistical and positive and negative systematic uncertainties for $\sqrt{s}$ = 7 TeV data. The theoretical uncertainties presented in this table, corresponding to the PDF, scale and FSR uncertainties described in Sec. 5, affect only the predictions of $A_{\rm{FB}}$ and the sin$^2\theta^{\rm{eff}}_{\rm W}$ determination, and do not apply to the uncertainties on the measured $A_{\rm{FB}}$.
Values for $A_{\rm{FB}}$ with the statistical and positive and negative systematic uncertainties for $\sqrt{s}$ = 8 TeV data. The theoretical uncertainties presented in this table, corresponding to the PDF, scale and FSR uncertainties described in Sec. 5, affect only the predictions of $A_{\rm{FB}}$ and the sin$^2\theta^{\rm{eff}}_{\rm W}$ determination, and do not apply to the uncertainties on the measured $A_{\rm{FB}}$.
The production of $\Upsilon$ mesons in $pp$ collisions at $\sqrt=7$ and $8\,\mathrm{TeV}$ is studied with the LHCb detector using data samples corresponding to an integrated luminosity of $1\,\mathrm{fb}^{-1}$ and $2\,\mathrm{fb}^{-1}$ respectively. The production cross-sections and ratios of cross-sections are measured as functions of the meson transverse momentum $p_T$ and rapidity $y$, for $p_T<30\,\mathrm{GeV}/c$} and $2.0<y<4.5$.
Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.
Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.
Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)].