The production of the $J^{P}={1⩈er 2}^{+}$ octet baryons Λ and Ξ−, the $J^{P}={3⩈er 2}^{+}$ decuplet baryons Σ(1385)±Ξ(1530)0, and Ω−, and the $J^{P}={3⩈er 2}^{-}$ orbitally excited state Λ(1520) has been measured in a sample of approximately 3.65 million hadronic Z0 decays. The integrated rates and the differential cross-sections as a function of xE, the scaled energy, are determined. The differential cross-sections of the Λ and Ξ− baryons are found to be softer than those predicted by both the JETSET and HERWIG Monte Carlo generators. The measured baryon yields are found to disagree with the simple diquark picture where only one tuning parameter for spin 1 diquarks is allowed. The yields are further compared with a thermodynamic model of hadron production which includes the production of orbitally excited mesons and baryons. The momentum spectra of Λ, Ξ−, Σ(1385)±Ξ(1530)0, and Λ(1520) are also compared to the predictions of an analytical QCD formula.
Differential cross section for LAMBDA production.
(1/LN(X)) distribution for LAMBDA production.
Differential cross section for XI- production.
The production rates of the $J_{P}={1⩈er 2}^{+}$ octet Σ baryons in hadronic Z0 decays have been measured using the OPAL detector at LEP. The inclusive production rates per hadronic Z0 decay of the three isospin states (including the respective antiparticle) have been separately measured for the first time: $άtrix {n_{Sigma^{+}}=0.099pm 0.008pm 0.013ŗ n_{Sigma^{0}}=0.071pm 0.012pm 0.013ŗ n_{Sigma^{-}}=0.083pm 0.006pm 0.009ŗ}$ where the first error is statistical and the second is systematic. Differential cross-sections are also presented for the Σ+ and Σ− and compared with JETSET and HERWIG predictions. Assuming full isospin symmetry, the average inclusive rate is: ${1⩈er 3}[n_{Sigma^{+}+Sigma^{0}+Sigma^{-}}]=0.084pm 0.005 ({⤪ stat.}) pm 0.008 ({⤪ syst.})$.
Differential cross section for SIGMA+ production.
Differential cross section for SIGMA- production.
Production of events with hadronic and leptonic final states has been measured in e^+e^- collisions at centre-of-mass energies of 130-172 GeV, using the OPAL detector at LEP. Cross-sections and leptonic forward-backward asymmetries are presented, both including and excluding the dominant production of radiative Z \gamma events, and compared to Standard Model expectations. The ratio R_b of the cross-section for bb(bar) production to the hadronic cross-section has been measured. In a model-independent fit to the Z lineshape, the data have been used to obtain an improved precision on the measurement of \gamma-Z interference. The energy dependence of \alpha_em has been investigated. The measurements have also been used to obtain limits on extensions of the Standard Model described by effective four-fermion contact interactions, to search for t-channel contributions from new massive particles and to place limits on chargino pair production with subsequent decay of the chargino into a light gluino and a quark pair.
The angular distribution of the thrust axis. Errors include statistical and systematic effects combined, with the former dominant.
The measured values include the effect of interference between initial- andfinal-state radiation.
Errors include statistical and systematic effects combined, with the formerdominant.
Measurements have been made in the OPAL experiment at LEP of the inclusive production of strange vector φ(1020) and K*(892)0 mesons, and the tensor meson K2*(1430)0. The overall production rates per hadronic Z0 decay have been determined to be 0.100±0.004stat.±0.007syst. φ(1020) mesons, 0.74±0.03stat.±0.03syst. K*(892)0 mesons and (forxE<0.3) 0.19±0.04stat.±0.06syst. K2*(1430)0 mesons. The measurements for the vector states update previously published results based on lower statistics, while the K2*(1430)0 rate represents the first direct measurement of a strange tensor state in Z0 decay. For the vector states, both the overall production rates and normalised differential cross sections, with respect to the scaled energy variablexE, have been compared to JETSET and HERWIG predictions. The peak positions in the ζ=ln(1/xp) distributions have been measured and compared to measurements of other hadron states.
No description provided.
Extrapolated to full x region.
Multiplicity for x > 0.3.
The production of Δ ++ baryons has been measured using 3.5 million hadronic Z 0 decays collected with the OPAL detector at LEP. The production rate and fragmentation function are presented. A total of 0.22 ± 0.04 ± 0.04 Δ ++ + ( Δ ) −− per hadronic Z 0 decay is observed. The fragmentation function is found to be softer than that predicted by the JETSET and HERWIG Monte Carlo event generators. With this measurement of Δ ++ production, at least one baryon of each strangeness level in the lightest baryon decuplet has now been measured at LEP.
This letter describes the first observation of W boson pair production at a centre-of-mass energy s =161 GeV in the OPAL detector at LEP. The analysis is sensitive to all expected W + W − decay channels. A total of 28 events have been selected for an integrated luminosity of 9.89±0.06 pb −1 . This is consistent with the Standard Model expectation, including signal and background contributions. The W pair production cross-section is measured to be σ WW = 3.62 −0.82 +0.93 ±0.16 pb. An analysis of the predicted M W dependence of the accepted cross-section, taking into account interference in the four-fermion production processes, yields M W = 80.40 −0.41−0.10 +0.44+0.09 ±0.10 GeV, where the first and second uncertainties are statistical and systematic, respectively, and the third arises form the beam energy uncertainty.
No description provided.
Inclusive production of the f_0(980), f_2(1270) and \phi(1020) resonances has been studied in a sample of 4.3 million hadronic Z^0 decays from the OPAL experiment at LEP. A coupled channel analysis has been used for the f_0 in simultaneous fits to the resonances in inclusive \pi+\pi- and K+K- mass spectra. Fragmentation functions are reported for the three states. Total inclusive rates are measured to be 0.141 +/- 0.007 +/- 0.011 f_0, 0.155 +/- 0.011 +/- 0.018 f_2, and 0.091 +/- 0.002 +/- 0.003 \phi mesons per hadronic Z^0 decay. The production properties of the f_0, including those in three-jet events, are compared with those of the f_2 and \phi, and with the Lund string model of hadron production. All measurements are consistent with the hypothesis that the f_0 is a conventional qq(bar) scalar meson.
Total inclusive production rates.
We have studied the production of D*± mesons in a sample of 1.25 million multihadronic decays of the Z0, in which 1969 candidates have been identified. We have determined the total multiplicity of charged D* mesons in multihadronic Z0 decays to be
No description provided.
Multiplicity data uncorrected for decay branching ratios.
No description provided.
Cross-sections for hadronic and leptonic two-fermion events, and leptonic forward-backward asymmetries, have been measured in e + e − collisions at a centre-of-mass energy of 161 GeV, using the OPAL detector at LEP. Results are presented both including and excluding the dominant production of radiative γZ 0 events. We have measured R b , the ratio of the number of b b to all multihadronic events at 161 GeV, and compared it to the result obtained at 130–136 GeV. All results agree well with the Standard Model expectations. In a model-independent fit to the Z 0 lineshape, the data presented here give an improved precision on the γZ 0 -interference term. The data have also been used to obtain new limits on extensions of the Standard Model described by effective four-fermion contact interactions.
No description provided.
THETA(P=4 5) is an acollinearity angle between electron and positron.
The production of neutral kaons in e+e− annihilation at centre-of-mass energies in the region of the Z0 mass and their Bose-Einstein correlations are investigated with the OPAL detector at LEP. A total of about 1.26×106 Z0 hadronic decay events are used in the analysis. The production rate of K0 mesons is found to be 1.99±0.01±0.04 per hadronic event, where the first error is statistical and the second systematic. Both the rate and the differential cross section for K0 production are compared to the predictions of Monte Carlo generators. This comparison indicates that the fragmentation is too soft in bothJetset andHerwig. Bose-Einstein correlations in Ks0Ks0 pairs are measured through the quantityQ, the four momentum difference of the pair. A threshold enhancement is observed in Ks0Ks0 pairs originating from a mixed sample of\(K^0 \bar K^0\) and K0K0 (\(\bar K^0 \bar K^0\)) pairs. For the strength of the effect and for the radius of the emitting source we find values of λ=1.14±0.23±0.32 andR0=(0.76±0.10±0.11) fm respectively. The first error is statistical and the second systematic.
No description provided.
The mean x is computed using the method of Lafferty and Wyatt NIM A355(1995)541.
The mean x is computed using the method of Lafferty and Wyatt NIM A355(1995)541.