ALICE is a large experiment at the CERN Large Hadron Collider. Located 52 meters underground, its detectors are suitable to measure muons produced by cosmic-ray interactions in the atmosphere. In this paper, the studies of the cosmic muons registered by ALICE during Run 2 (2015--2018) are described. The analysis is limited to multimuon events defined as events with more than four detected muons ($N_\mu>4$) and in the zenith angle range $0^{\circ}<\theta<50^{\circ}$. The results are compared with Monte Carlo simulations using three of the main hadronic interaction models describing the air shower development in the atmosphere: QGSJET-II-04, EPOS-LHC, and SIBYLL 2.3d. The interval of the primary cosmic-ray energy involved in the measured muon multiplicity distribution is about $ 4 \times 10^{15}<E_\mathrm{prim}< 6 \times 10^{16}$~eV. In this interval none of the three models is able to describe precisely the trend of the composition of cosmic rays as the energy increases. However, QGSJET-II-04 is found to be the only model capable of reproducing reasonably well the muon multiplicity distribution, assuming a heavy composition of the primary cosmic rays over the whole energy range, while SIBYLL 2.3d and EPOS-LHC underpredict the number of muons in a large interval of multiplicity by more than $20\%$ and $30\%$, respectively. The rate of high muon multiplicity events ($N_\mu>100$) obtained with QGSJET-II-04 and SIBYLL 2.3d is compatible with the data, while EPOS-LHC produces a significantly lower rate ($55\%$ of the measured rate). For both QGSJET-II-04 and SIBYLL 2.3d, the rate is close to the data when the composition is assumed to be dominated by heavy elements, an outcome compatible with the average energy $E_\mathrm{prim} \sim 10^{17}$ eV of these events. This result places significant constraints on more exotic production mechanisms.
Event-by-event fluctuations of the event-wise mean transverse momentum, $\langle p_{\mathrm{T}}\rangle$, of charged particles produced in proton-proton (pp) collisions at $\sqrt{s}$ = 5.02 TeV, Xe-Xe collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.44 TeV, and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV are studied using the ALICE detector based on the integral correlator $\langle\langle \Delta p_{\rm T}\Delta p_{\rm T}\rangle\rangle $. The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe-Xe and Pb-Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe-Xe and Pb-Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity, $S_0$, of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models.
Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/$c^2$ to a few TeV/$c^2$. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of $0.9$ tonne$\times$year, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10$^{17}$ GeV/$c^2$.
We present a measurement of the $\ttbar$ differential cross section with respect to the $\ttbar$ invariant mass, dSigma/dMttbar, in $\ppbar$ collisions at $\sqrt{s}=1.96$ TeV using an integrated luminosity of $2.7\invfb$ collected by the CDF II experiment. The $\ttbar$ invariant mass spectrum is sensitive to a variety of exotic particles decaying into $\ttbar$ pairs. The result is consistent with the standard model expectation, as modeled by \texttt{PYTHIA} with \texttt{CTEQ5L} parton distribution functions.
The production of beauty hadrons was measured via semi-leptonic decays at mid-rapidity with the ALICE detector at the LHC in the transverse momentum interval $1<p_{\rm T}<8$ GeV/$c$ in minimum-bias p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV and in $1.3<p_{\rm T}<8$ GeV/$c$ in the 20% most central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV. The pp reference spectra at $\sqrt{s}=5.02$ TeV and $\sqrt{s}=2.76$ TeV, needed for the calculation of the nuclear modification factors $R_{\rm pPb}$ and $R_{\rm PbPb}$, were obtained by a pQCD-driven scaling of the cross section of electrons from beauty-hadron decays measured at $\sqrt{s}=7$ TeV. In the $p_{\rm T}$ interval $3<p_{\rm T}<8$ GeV/$c$ a suppression of the yield of electrons from beauty-hadron decays is observed in Pb-Pb compared to pp collisions. Towards lower $p_{\rm T}$, the $R_{\rm PbPb}$ values increase with large systematic uncertainties. The $R_{\rm pPb}$ is consistent with unity within systematic uncertainties and is well described by theoretical calculations that include cold nuclear matter effects in p-Pb collisions. The measured $R_{\rm pPb}$ and these calculations indicate that cold nuclear matter effects are small at high transverse momentum also in Pb-Pb collisions. Therefore, the observed reduction of $R_{\rm PbPb}$ below unity at high $p_{\rm T}$ may be ascribed to an effect of the hot and dense medium formed in Pb-Pb collisions.
The production of prompt $D^{0}$, $D^{+}_{\rm s}$, and $\Lambda_{\rm c}^{+}$ hadrons, and their ratios, $D^{+}_{\rm s}$/$D^{0}$ and $\Lambda_{\rm c}^{+}$/$D^{0}$, are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y| <0.5$) with the ALICE detector at the LHC. The measurements are performed as a function of the charm-hadron transverse momentum ($p_{\rm T}$) in intervals of charged-particle multiplicity, measured with two multiplicity estimators covering different pseudorapidity regions. While the strange to non-strange $D^{+}_{\rm s}$/$D^{0}$ ratio indicates no significant multiplicity dependence, the baryon-to-meson $p_{\rm T}$-differential $\Lambda_{\rm c}^{+}$/$D^{0}$ ratio shows a multiplicity-dependent enhancement, with a significance of 5.3$\sigma$ for $1< p_{\rm T} < 12$ GeV/$c$, comparing the highest multiplicity interval with respect to the lowest one. The measurements are compared with a theoretical model that explains the multiplicity dependence by a canonical treatment of quantum charges in the statistical hadronisation approach, and with predictions from event generators that implement colour reconnection mechanisms beyond the leading colour approximation to model the hadronisation process. The $\Lambda_{\rm c}^{+}$/$D^{0}$ ratios as a function of $p_{\rm T}$ present a similar shape and magnitude as the $\Lambda/K^{0}_{s}$ ratios in comparable multiplicity intervals, suggesting a potential common mechanism for light- and charm-hadron formation, with analogous multiplicity dependence. The $p_{\rm T}$-integrated ratios, extrapolated down to $p_{\rm T}$=0, do not show a significant dependence on multiplicity within the uncertainties.
The pseudorapidity density of charged particles ($\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$) at mid-rapidity in Pb-Pb collisions has been measured at a center-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.02 TeV. It increases with centrality and reaches a value of $1943 \pm 54$ in $|\eta|<0.5$ for the 5% most central collisions. A rise in $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ as a function of $\sqrt{s_{\rm NN}}$ for the most central collisions is observed, steeper than that observed in proton-proton collisions and following the trend established by measurements at lower energy. The centrality dependence of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ as a function of the average number of participant nucleons, ${\langle N_\mathrm{part} \rangle}$, calculated in a Glauber model, is compared with the previous measurement at lower energy. A constant factor of about 1.2 describes the increase in $\frac{2}{\langle N_\mathrm{part} \rangle}\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle$ from $\sqrt{s_{\rm NN}}$ = 2.76 TeV to $\sqrt{s_{\rm NN}}$ = 5.02 TeV for all centrality intervals, within the measured range of 0-80% centrality. The results are also compared to models based on different mechanisms for particle production in nuclear collisions.
In this Letter, the ALICE Collaboration presents the first measurements of the charged-particle multiplicity density, $\rm{d}N_{\rm{ch}}/\rm{d}\eta$, and total charged-particle multiplicity, $N_{\rm{ch}}^{\rm{tot}}$, in Xe-Xe collisions at a centre-of-mass energy per nucleon--nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.44 TeV. The measurements are performed as a function of collision centrality over a wide pseudorapidity range of $-3.5 < \eta < 5$. The values of $\rm{d}N_{\rm{ch}}/\rm{d}\eta$ at mid-rapidity and $N_{\rm{ch}}^{\rm{tot}}$ for central collisions, normalised to the number of nucleons participating in the collision ($N_{\rm{part}}$) as a function of $\sqrt{s_{\rm NN}}$, follow the trends established in previous heavy-ion measurements. The same quantities are also found to increase as a function of $N_{\rm{part}}$, and up to the 10% most central collisions the trends are the same as the ones observed in Pb-Pb at a similar energy. For more central collisions, the Xe-Xe scaled multiplicities exceed those in Pb-Pb for a similar $N_{\rm{part}}$. The results are compared to phenomenological models and theoretical calculations based on different mechanisms for particle production in nuclear collisions. All considered models describe the data reasonably well within 20%.
The centrality dependence of the mean charged-particle multiplicity as a function of pseudorapidity is measured in approximately 1 $\mu$b$^{-1}$ of proton--lead collisions at a nucleon--nucleon centre-of-mass energy of $\sqrt{s_{_{\rm{NN}}}} = 5.02$ TeV using the ATLAS detector at the Large Hadron Collider. Charged particles with absolute pseudorapidity less than 2.7 are reconstructed using the ATLAS pixel detector. The $p$+Pb collision centrality is characterised by the total transverse energy measured in the Pb-going direction of the forward calorimeter. The charged-particle pseudorapidity distributions are found to vary strongly with centrality, with an increasing asymmetry between the proton-going and Pb-going directions as the collisions become more central. Three different estimations of the number of nucleons participating in the $p$+Pb collision have been carried out using the Glauber model as well as two Glauber--Gribov inspired extensions to the Glauber model. Charged-particle multiplicities per participant pair are found to vary differently for these three models, highlighting the importance of including colour fluctuations in nucleon--nucleon collisions in the modelling of the initial state of $p$+Pb collisions.
This paper presents a search for massive charged long-lived particles produced in pp collisions at $\sqrt{s}=$ 13 TeV at the LHC using the ATLAS experiment. The dataset used corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as $R$-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the $\sqrt{s}=$ 8 TeV dataset, thanks to the increase in expected signal cross-section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on $R$-hadron production cross-sections and masses are set. Gluino $R$-hadrons with lifetimes above 0.4 ns and decaying to $q\bar{q}$ plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 GeV and 1590 GeV. In the case of stable $R$-hadrons the lower mass limit at the 95% confidence level is 1570 GeV.