Date

Measurement of B anti-B Angular Correlations based on Secondary Vertex Reconstruction at sqrt(s)=7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 03 (2011) 136, 2011.
Inspire Record 889807 DOI 10.17182/hepdata.57695

A measurement of the angular correlations between beauty and anti-beauty hadrons (B B-bar) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC is presented, probing for the first time the region of small angular separation. The B hadrons are identified by the presence of displaced secondary vertices from their decays. The B hadron angular separation is reconstructed from the decay vertices and the primary-interaction vertex. The differential B B-bar production cross section, measured from a data sample collected by CMS and corresponding to an integrated luminosity of 3.1 inverse picobarns, shows that a sizable fraction of the B B-bar pairs are produced with small opening angles. These studies provide a test of QCD and further insight into the dynamics of b b-bar production.

6 data tables

Cross section as a function of DELTA(R) for leading jet transverse momentum > 56 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated.

Cross section as a function of DELTA(R) for leading jet transverse momentum > 84 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated.

Cross section as a function of DELTA(R) for leading jet transverse momentum > 120 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated. Note that these two systematic errors are different for the final point.

More…

Measurement of Bose-Einstein Correlations in pp Collisions at sqrt(s)=0.9 and 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 05 (2011) 029, 2011.
Inspire Record 884808 DOI 10.17182/hepdata.60018

Bose-Einstein correlations between identical particles are measured in samples of proton-proton collisions at 0.9 and 7 TeV centre-of-mass energies, recorded by the CMS experiment at the LHC. The signal is observed in the form of an enhancement of number of pairs of same-sign charged particles with small relative momentum. The dependence of this enhancement on kinematic and topological features of the event is studied.

7 data tables

The double ratio R_double at 900 and 7000 GeV.

The double ratio R_double at 7000 GeV in different bins of charged particle multiplicity and kT.

The double ratio R_double at 7000 GeV in different bins of charged particle multiplicity and kT.

More…

Indications of Conical Emission of Charged Hadrons at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 102 (2009) 052302, 2009.
Inspire Record 785050 DOI 10.17182/hepdata.102085

Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at 200 GeV by the STAR experiment. The acoplanarities in pp and d+Au indicate initial state kT broadening. Larger acoplanarity is observed in Au+Au collisions. The central Au+Au data show an additional effect signaling conical emission of correlated charged hadrons.

14 data tables

FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size.

More…

Determination of alpha-s from energy-energy correlations measured on the Z0 resonance.

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 257 (1991) 469-478, 1991.
Inspire Record 324427 DOI 10.17182/hepdata.29467

We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).

3 data tables

Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.

ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.

ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.


Energy-energy correlations in hadronic final states from Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 252 (1990) 149-158, 1990.
Inspire Record 300161 DOI 10.17182/hepdata.29534

We have studied the energy-energy angular correlations in hadronic final states from Z 0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ (5) MS =104 +25 -20 ( stat. ) +25 -20( syst. ) +30 00 ) theor. ) . MeV, which corresponds to α s (91 GeV)=0.106±0.003(stat.)±0.003(syst.) +0.003 -0.000 (theor). The theoretical error stems from different choices for the renormalization scale of α s . In the Monte Carlo simulation the scale of α s as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.

2 data tables

Data requested from the authors.

Values of LAMBDA-MSBAR(5) and ALPHA-S(91 GeV) deduced from the EEC measurements. The second systematic error is from the theory.