The reaction p ̄ p → n ̄ n has been studied at an incident antiproton laboratory momentum of 1.13 GeV/ c . The antineutron was identified through a subsequent annihilation on a proton. In all, 2601 identified events were obtained. Total and differential cross sections are presented. Comparison is made with the predictions of the Bryan and Phillips model which, in this energy range, is succesful in describing the related reaction p ̄ p → p ̄ p . Here, the agreement is less good.
No description provided.
Measurements have been carried out of total cross sections of positive kaons on hydrogen and deuterium to a statistical precision of better than ± 0.1 mb for most points in the range of laboratory momentum from 410 to 1065 MeV / c in intervals of approximately 50 MeV/ c . A very broad elastic structure in the I = 0 state is inferred.
No description provided.
In a new measurement of proton total cross sections at 3.00 GeV/c, the p−d total cross section is found to be lower than a previous measurement by 1.17±0.09 mb. This implies a corresponding new value for the total cross section for I=0 which is 2.18±0.27 mb lower than the previous value. Possible sources of systematic error are discussed.
No description provided.
'1'. '2'. '3'. '5'.
No description provided.
Total cross sections of K± and p¯ on hydrogen and deuterium were measured in a standard transmission experiment with statistical precisions of the order of 0.05-0.25%. Data were obtained in the momentum range 2.45-3.30 GeV/c for K−N, 1.55-3.30 GeV/c for K+N, and 1.00-3.30 GeV/c for p¯N. Cross sections for the pure isotopic spin states are obtained using a procedure for the deuterium data which takes into account Fermi motion and the shadow effect. Evidence for the following new structures was found: Y1*(2455), Y1*(2620), Y0*(2585), Z1*(2150), Z1*(2500), π1*(2290), π1*(2350), and π0*(2375).
?.
?.
?.
None
No description provided.
No description provided.
No description provided.