Date

Proton, deuteron and triton flow measurements in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Eur.Phys.J.A 59 (2023) 80, 2023.
Inspire Record 2132332 DOI 10.17182/hepdata.152804

High precision measurements of flow coefficients $v_{n}$ ($n = 1 - 4$) for protons, deuterons and tritons relative to the first-order spectator plane have been performed in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV with the High-Acceptance Di-Electron Spectrometer (HADES) at the SIS18/GSI. Flow coefficients are studied as a function of transverse momentum $p_{t}$ and rapidity $y_{cm}$ over a large region of phase space and for several classes of collision centrality. A clear mass hierarchy is found for the slope of $v_{1}$, $d v_{1}/d y^{\prime}|_{y^{\prime} = 0}$ where $y^{\prime}$ is the scaled rapidity, and for $v_{2}$ at mid-rapidity. Scaling with the number of nucleons is observed for the $p_{t}$ dependence of $v_{2}$ and $v_{4}$ at mid-rapidity, which is indicative for nuclear coalescence as the main process responsible for light nuclei formation. $v_{2}$ is found to scale with the initial eccentricity $\langle \epsilon_{2} \rangle$, while $v_{4}$ scales with $\langle \epsilon_{2} \rangle^{2}$ and $\langle \epsilon_{4} \rangle$. The multi-differential high-precision data on $v_{1}$, $v_{2}$, $v_{3}$, and $v_{4}$ provides important constraints on the equation-of-state of compressed baryonic matter.

35 data tables

The resolution $\Re_{n}$ of the first-order spectator event plane for flow coefficients of different orders $n$ as a function of the event centrality (Adamczewski-Musch:2020iio). The circles correspond to centrality intervals of $5 \%$ width and the squares to $10 \%$ width (curves are meant to guide the eye).

The resolution $\Re_{n}$ of the first-order spectator event plane for flow coefficients of different orders $n$ as a function of the event centrality (Adamczewski-Musch:2020iio). The circles correspond to centrality intervals of $5 \%$ width and the squares to $10 \%$ width (curves are meant to guide the eye).

The flow coefficients $v_{1}$, $v_{2}$, $v_{3}$, and $v_{4}$ (from top to bottom panels) of protons, deuterons and tritons (from left to right panels) in semi-central ($20 - 30 \%$) Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV as a function of the centre-of-mass rapidity $y_{cm}$ in transverse momentum intervals of $50$ MeV$/c$ width. Systematic uncertainties are displayed as boxes. Lines are to guide the eye.

More…

Version 3
Beam Energy Dependence of Fifth and Sixth-Order Net-proton Number Fluctuations in Au+Au Collisions at RHIC

The STAR collaboration Aboona, Bassam ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.Lett. 130 (2023) 082301, 2023.
Inspire Record 2119969 DOI 10.17182/hepdata.132661

We report the beam energy and collision centrality dependence of fifth and sixth order cumulants ($C_{5}$, $C_{6}$) and factorial cumulants ($\kappa_{5}$, $\kappa_{6}$) of net-proton and proton distributions, from $\sqrt{s_{NN}} = 3 - 200$ GeV Au+Au collisions at RHIC. The net-proton cumulant ratios generally follow the hierarchy expected from QCD thermodynamics, except for the case of collisions at $\sqrt{s_{NN}}$ = 3 GeV. $C_{6}/C_{2}$ for 0-40% centrality collisions is increasingly negative with decreasing $\sqrt{s_{NN}}$, while it is positive for the lowest $\sqrt{s_{NN}}$ studied. These observed negative signs are consistent with QCD calculations (at baryon chemical potential, $\mu_{B} \leq$ 110 MeV) that include a crossover quark-hadron transition. In addition, for $\sqrt{s_{NN}} \geq$ 11.5 GeV, the measured proton $\kappa_{n}$, within uncertainties, does not support the two-component shape of proton distributions that would be expected from a first-order phase transition. Taken in combination, the hyper-order proton number fluctuations suggest that the structure of QCD matter at high baryon density, $\mu_{B}\sim 750$ MeV ($\sqrt{s_{NN}}$ = 3 GeV) is starkly different from those at vanishing $\mu_{B}\sim 20$MeV ($\sqrt{s_{NN}}$ = 200 GeV and higher).

25 data tables

Event-by-event proton multiplicity distributions for 0-40$\%$, 0-5$\%$ and 50-60$\%$ Au+Au collisions at $\sqrt{s_{NN}} = 3 GeV. The distributions are not corrected for proton and antiproton detection efficiency.

Event-by-event proton multiplicity distributions for 0-40$\%$, 0-5$\%$ and 50-60$\%$ Au+Au collisions at $\sqrt{s_{NN}} = 3 GeV. The distributions are not corrected for proton and antiproton detection efficiency.

Event-by-event proton multiplicity distributions for 0-40$\%$, 0-5$\%$ and 50-60$\%$ Au+Au collisions at $\sqrt{s_{NN}} = 3 GeV. The distributions are not corrected for proton and antiproton detection efficiency.

More…

Observation of the B$_\mathrm{c}^+$ meson in PbPb and pp collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 128 (2022) 252301, 2022.
Inspire Record 2006858 DOI 10.17182/hepdata.111309

The $B_\mathrm{c}^+$ meson is observed for the first time in heavy ion collisions. Data from the CMS detector are used to study the production of the $B_\mathrm{c}^+$ meson in lead-lead (PbPb) and proton-proton (pp) collisions at a center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} =$ 5.02 TeV, via the $B_\mathrm{c}^+ \to (J/\psi\to\mu^+\mu^-)\mu^+\nu_\mu$ decay. The $B_\mathrm{c}^+$ nuclear modification factor, derived from the PbPb-to-pp ratio of production cross sections, is measured in two bins of the trimuon transverse momentum and of the PbPb collision centrality. The B$_\mathrm{c}^+$ meson is shown to be less suppressed than quarkonia and most of the open heavy-flavor mesons, suggesting that effects of the hot and dense nuclear matter created in heavy ion collisions contribute to its production. This measurement sets forth a promising new probe of the interplay of suppression and enhancement mechanisms in the production of heavy-flavor mesons in the quark-gluon plasma.

3 data tables

The $B_c$ meson production (pp-equivalent) cross-section times branching fraction of the $B_c\rightarrow (J/\psi \rightarrow \mu\mu) \mu \nu_{\mu}$ decay in pp and PbPb collisions. The used kinematic variables correspond to those of the trimuon final state. The two $p_T$ bins correspond to different rapidity ranges. The total uncertainty is decomposed in an uncertainty from the fit and one representing all other sources. The markers of the $p_T^{\mu\mu\mu}$ bins are placed according to the Lafferty-Wyatt prescription.

The $B_c$ meson nuclear modification factor in PbPb collisions, in $p_T^{\mu\mu\mu}$ bins corresponding to different trimuon rapidity ranges. The total uncertainty is decomposed in a bin-to-bin-uncorrelated uncertainty and one fully correlated along the two bins. The markers of the $p_T^{\mu\mu\mu}$ bins are placed at the average of the Lafferty-Wyatt prescriptions applied to the pp and PbPb spectra.

The $B_c$ meson nuclear modification factor in PbPb collisions, in centrality bins, integrated over the studied kinematic range. The cut on the trimuon rapidity depends on the trimuon $p_T$. The total uncertainty is decomposed in a bin-to-bin-uncorrelated uncertainty and one fully correlated along the two bins. The centrality bin markers are placed at the minimum bias average number of participants $N_{part}$.


Version 2
Sub-threshold production of K$^{0}_{s}$ mesons and ${\Lambda}$ hyperons in Au(1.23A GeV)$+$Au

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett.B 793 (2019) 457-463, 2019.
Inspire Record 1709767 DOI 10.17182/hepdata.90954

We present first data on sub-threshold production of K0 s mesons and {\Lambda} hyperons in Au+Au collisions at $\sqrt{s_{NN}}$ = 2.4 GeV. We observe an universal <Apart> scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their <Apart> scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of the latter can simultaneously describe all observables with reasonable \c{hi}2 values.

36 data tables

Example of $K^{0}_{S}$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $80-120 MeV/c^{2}$.

Example of $K^{0}_{S}$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $80-120 MeV/c^{2}$.

Example of $\Lambda$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $100-150 MeV/c^{2}$.

More…

Version 3
Deep sub-threshold {\phi} production and implications for the K+/K- freeze-out in Au+Au collisions

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett.B 778 (2018) 403-407, 2018.
Inspire Record 1519164 DOI 10.17182/hepdata.92099

We present data on charged kaons (K+-) and {\phi} mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K and {\phi} mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The {\phi}/K- multiplicity ratio is found to be surprisingly high with a value of 0.52 +- 0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K- transverse-mass spectra can be explained solely by feed- down, which substantially softens the spectra of K- mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze- out temperatures of K+ and K- mesons caused by different couplings to baryons.

37 data tables

Acceptance and efficiency corrected transverse-mass spectra around mid-rapidity.

Acceptance and efficiency corrected transverse-mass spectra around mid-rapidity.

Acceptance and efficiency corrected transverse-mass spectra around mid-rapidity.

More…

Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 94 (2016) 014907, 2016.
Inspire Record 1419279 DOI 10.17182/hepdata.89453

The BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. The temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled $p+p$ collisions. This suppression, which increases as the collisions become more central is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. The ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.

138 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

More…

Rapidity dependence of deuteron production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 83 (2011) 044906, 2011.
Inspire Record 856692 DOI 10.17182/hepdata.89452

We have measured the distributions of protons and deuterons produced in high energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse and longitudinal momentum. Near mid-rapidity we have also measured the distribution of anti-protons and anti-deuterons. We present our results in the context of coalescence models. In particular we extract the "volume of homogeneity" and the average phase-space density for protons and anti-protons. Near central rapidity the coalescence parameter $B_2(p_T)$ and the space averaged phase-space density $<f> (p_T)$ are very similar for both protons and anti-protons. For protons we see little variation of either $B_2(p_T)$ or the space averaged phase-space density as the rapidity increases from 0 to 3. However both these quantities depend strongly on $p_T$ at all rapidities. These results are in contrast to lower energy data where the proton and anti-proton phase-space densities are different at $y$=0 and both $B_2$ and $f$ depend strongly on rapidity.

25 data tables

$C_{\Lambda}(p_{\mathrm{T}})$ versus $p_{\mathrm{T}}$ for $\mathrm{\Lambda}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=[0, 1, 2, 3]$ for $0-20$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0$ for $0-20$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{d}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0$ for $0-20$% central

More…

Kaon and Pion Production in Central Au+Au Collisions at \sqrt{s_{NN}}=62.4 GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 687 (2010) 36-41, 2010.
Inspire Record 836865 DOI 10.17182/hepdata.89451

Invariant pT spectra and rapidity densities covering a large rapidity range(-0.1 < y < 3.5) are presented for $\pi^{\pm}$ and $K^{\pm}$ mesons from central Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV. The mid-rapidity yields of meson particles relative to their anti-particles are found to be close to unity ($\pi^-/\pi^+ \sim 1$, $K^-/K^+ \sim 0.85$) while the anti-proton to proton ratio is $\bar{p}/p \sim 0.49$. The rapidity dependence of the $\pi^-/\pi^+$ ratio is consistent with a small increase towards forward rapidities while the $K^-/K^+$ and $\bar{p}/p$ ratios show a steep decrease to $\sim$ 0.3 for kaons and 0.022 for protons at $y\sim 3$. It is observed that the kaon production relative to its own anti-particle as well as to pion production in wide rapidity and energy ranges shows an apparent universal behavior consistent with the baryo-chemical potential, as deduced from the $\bar{p}/p$ ratio, being the driving parameter.

40 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=-0.2-0.0$ for $0-10$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=0.0-0.2$ for $0-10$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=0.7-0.9$ for $0-10$% central

More…

Nuclear stopping and rapidity loss in Au+Au collisions at sqrt{s_{NN}}=62.4 GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 677 (2009) 267-271, 2009.
Inspire Record 810481 DOI 10.17182/hepdata.89449

Transverse momentum spectra of protons and anti-protons measured in the rapidity range 0<y<3.1 from 0-10% central Au+Au collisions at sqrt{s_{NN}}=62.4 GeV are presented. The rapidity densities, dN/dy, of protons, anti-protons and net-protons N()p-N(pbar) have been deduced from the spectra over a rapidity range wide enough to observe the expected maximum net-baryon density. From mid-rapidity to y=1 the net-proton yield is roughly constant (dN/dy ~ 10),but rises to dN/dy ~25 at 2.3<y<3.1. The mean rapidity loss is 2.01 +-0.16 units from beam rapidity. The measured rapidity distributions are compared to model predictions. Systematics of net-baryon distributions and rapidity loss vs. collision energy are discussed.

16 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=-0.1-0.1$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=-0.1-0.1$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=0.4-0.9$

More…

Nuclear modification factor for charged pions and protons at forward rapidity in central Au + Au collisions at 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 650 (2007) 219-223, 2007.
Inspire Record 729167 DOI 10.17182/hepdata.89447

We present spectra of charged pions and protons in 0-10% central Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV at mid-rapidity ($y=0$) and forward pseudorapidity ($\eta=2.2$) measured with the BRAHMS experiment at RHIC. The spectra are compared to spectra from p+p collisions at the same energy scaled by the number of binary collisions. The resulting nuclear modification factors for central Au+Au collisions at both $y=0$ and $\eta=2.2$ exhibit suppression for charged pions but not for (anti-)protons at intermediate $p_T$. The $\bar{p}/\pi^-$ ratios have been measured up to $p_T\sim 3$ GeV/$c$ at the two rapidities and the results indicate that a significant fraction of the charged hadrons produced at intermediate $p_T$ range are (anti-)protons at both mid-rapidity and $\eta = 2.2$.

17 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

More…