None
Data from Run 1. There is an additional overall systematic uncertainty of 5.2 pct.
Data from Run 2. There is an additional overall systematic uncertainty of 5.2 pct.
Average R value.
We report a measurement of the production of antideuterons d in e + e − annihilation at centre-of-mass energies around 10 GeV using the ARGUS detector at the DORIS II storage ring. We observe an enhancement of d production in direct hadronic ϒ (1S) and ϒ (2S) resonance decays. From 21 events width a d candidate the inclusive cross section 1 σ dir had · d σ d p and the production rate of antideuterons are determined. A production rate of (6.0±2.0±0.6) × 10 -5 d per direct hadronic ϒ decay and a 90% CL upper limit of 1.7 × 10 −5 d per e + e − →q q continuum event are obtained. These results are related to antiproton production through a simple model.
Acceptance corrected, background subtracted momentum spectrum observed in UPSI(1S) and UPSI(2S) resonance decays.
The two-jet differential cross section d3σ(p¯p→jet 1+jet 2+X)/dEtdη1dη2, averaged over -0.6≤η1≤0.6, at √s =1.8 TeV, has been measured in the Collider Detector at Fermilab. The predictions of leading-order quantum chromodynamics for most choices of structure functions show agreement with the data.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
The Fermilab 15-ft bubble chamber has been exposed to a quadrupole triplet neutrino beam produced at the Tevatron. The ratio of ν to ν¯ in the beam is approximately 2.5. The mean event energy for ν-induced charged-current events is 150 GeV, and for ν¯-induced charged-current events it is 110 GeV. A total of 64 dimuon candidates (1 μ+μ+, 52 μ−μ+ and μ+μ−, and 11 μ−μ−) is observed in the data sample of approximately 13 300 charged-current events. The number and properties of the μ−μ− and μ+μ+ candidates are consistent with their being produced by background processes, the important sources being π and K decay and punchthrough. The 90%-C.L. upper limit for μ−μ−/μ− for muon momenta above 4 GeV/c is 1.2×10−3, and for momenta above 9 GeV/c this limit is 1.1×10−3. The opposite-sign-dimuon–to–single-muon ratio is (0.62±0.13)% for muon momenta above 4 GeV/c. There are eight neutral strange particles in the opposite-sign sample, leading to a rate per dimuon event of 0.65±0.29. The opposite-sign-dimuon sample is consistent with the hypothesis of charm production and decay.
No description provided.
No description provided.
No description provided.
We present a measurement of the total cross section for γγ→hadrons, with one photon quasireal and the other a spacelike photon of mass squared −Q2. Results are presented as a function of Q2 and the γγ center-of-mass energy W, with the Q2 range extending from 0.2 to 60 GeV2, and W in the range from 2 to 10 GeV. The data were taken with the TPC/Two-Gamma facility at the SLAC e+e− storage ring PEP, which was operated at a beam energy of 14.5 GeV. The cross section exhibits a gentle falloff with increasing W. Its Q2 dependence is shown to be well described by an incoherent sum of vector-meson and pointlike scattering over most of the observed W range. Agreement at high Q2 is improved if a minimum-pT cutoff (motivated by QCD) is imposed on the pointlike contribution.
Errors are statistical only.
Errors are statistical only.
Errors are statistical only.
A high-statistics measurement of the differential cross-sections for neutrino-iron scattering in the wide-band neutrino beam at the CERN SPS is presented. Nucleon structure functions are extracted and theirQ2 evolution is compared with the predictions of quantum chromodynamics.
No description provided.
No description provided.
No description provided.
We report on a high statistics study of π0 and η production in continuum events and in direct decays of the Γ(1S) and Γ(2S) resonances. The measured production rates per event are\(\left\langle {n_{\pi ^0 } } \right\rangle\)=3.22 ± 0.07 ± 0.31 (3.97 ± 0.23 ± 0.38) and 〈nη〉=0.19 ± 0.04 ± 0.04 (0.40 ± 0.14 ± 0.09) for continuum events (direct Γ(1S) decays).
First data point in table is from the continuum at sqrt(s)=9.46 GeV.
First data point in table is from the continuum at sqrt(s)=9.46 GeV.
PI0 spectrum in the continuum.
We report on the first observation of Δ(1232) ++ and Δ(1232)++¯ baryons in e + e − annihilation at energies around 10 GeV, using the ARGUS detector at DORIS II. The sum of the rates of Δ ++ and Δ++¯ per hadronic event in the continuum is measured to be 0.040±0.008±0.006, and the rate in direct ϒ(1S) decays is 0.124±0.016±0.015. The momentum spectrum of Δ ++ baryons in direct ϒ(1S) decays has been measured.
Production on the UPSI(1S) resonance.
No description provided.
Using the ARGUS detector at thee+e− storage ring DORIS II, we have investigated inclusive production of π±,K±,Ks0 and\(\bar p\) in multihadron events at 9.98 GeV and in direct decays of the ϒ(1S) meson, i.e. from quark and gluon fragmentation. The most pronounced difference is the rate of baryon production. The Lund Monte Carlo program gives a reasonable qualitative description, although it cannot reproduce our data in detail.
No description provided.
No description provided.
No description provided.
We report measurements from elastic photoproduction of ω's on hydrogen for photon energies between 60 and 225 GeV, elastic φ photoproduction on hydrogen between 35 and 165 GeV and on deuterium between 45 and 85 GeV, elastic photoproduction on deuterium of an enhancement at 1.72 GeV/c2 decaying into K+K−, and elastic and inelastic photoproduction on deuterium of pp¯ pairs.
No description provided.
No description provided.
No description provided.