Measurement of D*+- production in deep inelastic e+- p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Rev.D 69 (2004) 012004, 2004.
Inspire Record 626816 DOI 10.17182/hepdata.46419

Inclusive production of $D^*(2010)$ mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.9 pb$^{-1}$. The decay channel $D^{* +}\to D^0 \pi^+ $ with $D^0\to K^-\pi^+$ and corresponding antiparticle decay were used to identify $D^*$ mesons. Differential $D^*$ cross sections with $1.5<Q^2<1000$ GeV$^2$ and $0.02<y<0.7$ in the kinematic region $1.5<p_T(D^*)<15$ GeV and $|\eta(D^*)|<1.5$ are compared to different QCD calculations incorporating different parameterisations of the parton densities in the proton. The data show sensitivity to the gluon distribution in the proton and are reasonably well described by next-to-leading-order QCD with the ZEUS NLO QCD fit used as the input parton density in the proton. The observed cross section is extrapolated to the full kinematic region in $p_T(D^*)$ and $\eta(D^*)$ in order to determine the open-charm contribution, $F_2^{\rm charm}(x,Q^2)$, to the proton structure function, $F_2$. Since, at low $Q^2$, the uncertainties of the data are comparable to those from the QCD fit, the measured differential cross sections in $y$ and $Q^2$ should be used in future fits to constrain the gluon density.

17 data tables

Overall total cross section. The second DSYS error is due to the uncertainty in the BR for D* and D0 decay.

Measured differential cross section as a function of Q**2.

Measured differential cross section as a function of X.

More…

Measurement of the open-charm contribution to the diffractive proton structure function.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Nucl.Phys.B 672 (2003) 3-35, 2003.
Inspire Record 624128 DOI 10.17182/hepdata.43831

Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta < 0.8, p_T(D*+/-) > 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.

18 data tables

Total cross section for diffractive D*+- production in the stated kinematicregion.. The second DSYS uncertainty arises from the subtraction of the proton-dissociative background.

The differential cross section as a function of X(NAME=POMERON).

The differential cross section as a function of transverse momentum.

More…

Measurement and QCD analysis of neutral and charged current cross sections at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 30 (2003) 1-32, 2003.
Inspire Record 616311 DOI 10.17182/hepdata.11903

The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD analyses in the framework of the Standard Model to extract flavour separated parton distributions in the proton.

21 data tables

The NC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The CC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The NC cross section DSIG/DX for Q**2 > 1000 GeV**2. There is an additional 1.5 PCT normalization uncertainty.

More…

Measurement of the hadronic photon structure function F2(gamma)(x, Q**2) in two-photon collisions at LEP

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Eur.Phys.J.C 30 (2003) 145-158, 2003.
Inspire Record 631231 DOI 10.17182/hepdata.43218

The hadronic photon structure function $F_2^\gamma(x,Q^2)$ is measured from data taken with the ALEPH detector at LEP. At centre-of-mass energies between

4 data tables

Measured value of F2/ALPHAE at a mean Q**2 of 17.3 GeV**2.

Measured value of F2/ALPHAE at a mean Q**2 of 67.2 GeV**2.

Statistical correlation coefficients for the F2 measurements at Q**2 = 17.3 GeV**2.

More…

A kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Taiuti, M. ; et al.
Phys.Rev.D 67 (2003) 092001, 2003.
Inspire Record 612145 DOI 10.17182/hepdata.12253

We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.

46 data tables

No description provided.

No description provided.

No description provided.

More…

On the rise of the proton structure function F2 towards low x.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 520 (2001) 183-190, 2001.
Inspire Record 561805 DOI 10.17182/hepdata.46780

A measurement of the derivative (d ln F_2 / d lnx)_(Q^2)= -lambda(x,Q^2) of the proton structure function F_2 is presented in the low x domain of deeply inelastic positron-proton scattering. For 5*10^(-5)<=x<=0.01 and Q^2>=1.5 GeV^2, lambda(x,Q^2) is found to be independent of x and to increase linearly with ln(Q^2).

17 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of D*+- meson production and F2(c) in deep inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 528 (2002) 199-214, 2002.
Inspire Record 561885 DOI 10.17182/hepdata.46834

The inclusive production of D^{*+-}(2010) mesons in deep-inelastic scattering is studied with the H1 detector at HERA. In the kinematic region 1<Q^2<100 GeV^2 and 0.05<y<0.7 an e^+p cross section for inclusive D^(*+-) meson production of 8.50+- 0.42 (stat.)^(+1.21)_(-1.00) (syst.) nb is measured in the visible range p_(tD^*)>1.5 GeV and |\eta_(D^*)|<1.5. Single and double differential inclusive D^(*+-) meson cross sections are compared to perturbative QCD calculations in two different evolution schemes. The charm contribution to the proton structure, F_2^c(x,Q^2), is determined by extrapolating the visible charm cross section to the full phase space. This contribution is found to rise from about 10% at Q^2 = 1.5 GeV^2 to more than 25% at Q^2 = 60 GeV^2 corresponding to x values ranging from 5*10^(-5) to 3*10^(-3)$.

14 data tables

The inclusive cross section for D*+- production. The second DSYS error is related to the changes in efficiency obtained by using different Monte Carlo generators and varying the model parameters.

Single differential visible cross section as a function of W.

Single differential visible cross section as a function of PT.

More…

Observation of diffractive J / psi production at the Fermilab Tevatron

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 87 (2001) 241802, 2001.
Inspire Record 560628 DOI 10.17182/hepdata.55764

We report the first observation of diffractive $J/\psi(\to \mu^+\mu^-)$ production in $\bar pp$ collisions at $\sqrt{s}$=1.8 TeV. Diffractive events are identified by their rapidity gap signature. In a sample of events with two muons of transverse momentum $p_T^{\mu}>2$ GeV/$c$ within the pseudorapidity region $|\eta|<$1.0, the ratio of diffractive to total $J/\psi$ production rates is found to be $R_{J/\psi}= [1.45\pm 0.25]%$. The ratio $R_{J/\psi}(x)$ is presented as a function of $x$-Bjorken. By combining it with our previously measured corresponding ratio $R_{jj}(x)$ for diffractive dijet production, we extract a value of $0.59\pm 0.15$ for the gluon fraction of the diffractive structure function of the proton.

3 data tables

Diffractive to total J/psi production ratio.

Ratio of diffractive to total J/psi rate, per unit of the fractional momentum loss of the leading (anti)proton, and as a function of x-Bjorken of the struck parton of the (anti)proton adjacent to the rapidity gap and participating in the J/psi production.

Gluon fraction of the diffractive structure function of the (anti)proton.


Measurement of the neutral current cross section and F2 structure function for deep inelastic e+ p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 21 (2001) 443-471, 2001.
Inspire Record 557597 DOI 10.17182/hepdata.46774

The cross section and the proton structure function F2 for neutral current deep inelastic e+p scattering have been measured with the ZEUS detector at HERA using an integrated luminosity of 30 pb-1. The data were collected in 1996 and 1997 at a centre-of-mass energy of 300 GeV. They cover the kinematic range 2.7 < Q^2 < 30000 GeV2 and 6.10^-5 < x < 0.65. The variation of F2 with x and Q2 is well described by next-to-leading-order perturbative QCD as implemented in the DGLAP evolution equations.

6 data tables

The electromagnetic structure function, F2(C=EM), in NC DIS scattering at Q**2 from 2.7 to 30000 GeV**2.

The corrections to the structure function, F2(C=EM), in NC DIS scattering at Q**2 from 2.7 to 30000 GeV**2.

The relative uncertainties in the reduced cross section. See text of paper for more details. There is an additional 2 PCT overall normalization error not included, andan addtional uncertainty of 1 PCT at low Q**2.. DUNC - Uncorrelated systematic error. Correlated Systematic Errors:. D1 - positron finding and efficiency. D2 - positron scattering angle - A. D3 - positron scattering angle - B. D4 - positron energy scale. D5 - hadronic energy measurment - FCAL. D6 - hadronic energy measurment - BCAL. D7 - hadronic energy measurment - RCAL. D8 - hadronic energy flow - A. D9 - background subtractions. D10 - hadronic energy flow - B.

More…

Measurement of neutral and charged current cross-sections in electron - proton collisions at high Q**2

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 19 (2001) 269-288, 2001.
Inspire Record 539088 DOI 10.17182/hepdata.46812

The inclusive e^-p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA, in the range of four-momentum transfer squared Q^2 between 150 and 30000 GeV^2, and Bjorken x between 0.002 and 0.65. The data were taken in 1998 and 1999 with a centre-of-mass energy of 320 GeV and correspond to an integrated luminosity of 16.4 pb^(-1). The data are compared with recent measurements of the inclusive neutral and charged current e^+p cross sections. For Q^2>1000 GeV^2 clear evidence is observed for an asymmetry between e^+p and e^-p neutral current scattering and the generalised structure function xF_3 is extracted for the first time at HERA. A fit to the charged current data is used to extract a value for the W boson propagator mass. The data are found to be in good agreement with Standard Model predictions.

12 data tables

The NC single differential cross section, as a function of X, for Y < 0.9 and Q**2 > 1000 GeV**2. The first DSYS error is the uncorrelated systematic errorand the second is the correlated systematic error.

The NC single differential cross section, as a function of X, for Y < 0.9 and Q**2 > 10000 GeV**2. The first DSYS error is the uncorrelated systematic error and the second is the correlated systematic error.

The CC single differential cross section, as a function of X, for measured for 0.03 < Y < 0.85 and Q**2 > 1000 GeV**2. and corrected by KCOR to Y < 0.9. The first DSYS error is the uncorrelated systematic error and the second is the correlated systematic error.

More…