QCD analyses and determinations of alpha(s) in e+ e- annihilation at energies between 35-GeV and 189-GeV.

The JADE & OPAL collaborations Pfeifenschneider, P. ; Biebel, O. ; Movilla Fernandez, P.A. ; et al.
Eur.Phys.J.C 17 (2000) 19-51, 2000.
Inspire Record 513337 DOI 10.17182/hepdata.12882

We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.

80 data tables

Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.

Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.

Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.

More…

A study of event shapes and determinations of alpha(s) using data of e+ e- annihilations at s**(1/2) = 22-GeV to 44-GeV.

The JADE collaboration Movilla Fernandez, P.A. ; Biebel, O. ; Bethke, S. ; et al.
Eur.Phys.J.C 1 (1998) 461-478, 1998.
Inspire Record 447560 DOI 10.17182/hepdata.43431

Data recorded by the JADE experiment at the PETRA e^+e^- collider were used to measure the event shape observables thrust, heavy jet mass, wide and total jet broadening and the differential 2-jet rate in the Durham scheme. For the latter three observables, no experimental results have previously been presented at these energies. The distributions were compared with resummed QCD calulations (O(alpha_s^2)+NLLA), and the strong coupling constant alpha_s(Q) was determined at different energy scales Q=sqrt{s}. The results, \alpha_s(22 GeV) = 0.161 ^{+0.016}_{-0.011}, \alpha_s(35 GeV) = 0.143 ^{+0.011}_{-0.007}, \alpha_s(44 GeV) = 0.137 ^{+0.010}_{-0.007}, are in agreement with previous combined results of PETRA albeit with smaller uncertainties. Together with corresponding data from LEP, the energy dependence of alpha_s is significantly tested and is found to be in good agreement with the QCD expectation. Similarly, mean values of the observables were compared to analytic QCD predictions where hadronisation effects are absorbed in calculable power corrections.

13 data tables

The errors are statistical only.

The last row corresponds to the mean value.

The last row corresponds to the mean value.

More…

Differential Three Jet Cross-section in $e^+ e^-$ Annihilation and Comparison With Second Order Predictions of {QCD} and Abelian Vector Theory

The JADE collaboration Bartel, W. ; Cords, D. ; Dietrich, G. ; et al.
Phys.Lett.B 119 (1982) 239-244, 1982.
Inspire Record 180033 DOI 10.17182/hepdata.30830

Differential three-jet cross sections have been measured in e + e − -annihilation at an average CM energy of 33.8 GeV and were compared to first- and second-order predictions of QCD and of a QED-like abelian vector theory. QCD provides a good description of the observed distributions. The inclusion of second-order effects reduced the observed quark-gluon coupling strength by about 20% to α S = 0.16 ± 0.015 (stat.) ± 0.03 (syst.). The abelian vector theory is found to be incompatible with the data.

2 data tables

FIRST ORDER QCD.

SECOND ORDER QCD.


Observation of Planar Three Jet Events in e+ e- Annihilation and Evidence for Gluon Bremsstrahlung

The JADE collaboration Bartel, W. ; Canzler, T. ; Cords, D. ; et al.
Phys.Lett.B 91 (1980) 142-147, 1980.
Inspire Record 143985 DOI 10.17182/hepdata.6339

Topological distributions of charged and neutral hadrons from the reaction e + e − → multihadrons are studied at √ s of about 30 GeV. An excess of planar events is observed at a rate which cannot be explained by statistical fluctuations in the standard two-jet process. The planar events, mostly consisting of a slim jet on one side and a broader jet on the other, are shown actually to possess three-jet structure by demonstrating that the broader jet itself consists of two collinear jets in its own rest system. Detailed agreement between data and predictions is obtained if the process e + e − →q q ̄ g is taken into account. This strongly suggests gluon bremsstrahlung as the origin of the planar three-jet events. By comparison of the data with the qq̄g-model we obtain a value for the strong coupling constant of α S ( q 2 = 0.17 ± 0.04.

2 data tables

THRUST AND PLANARITY DISTRIBUTIONS. FINAL (BETTER) THRUST DISTRIBUTIONS WITH DETECTOR CORRECTIONS TO BE PUBLISHED LATER.

No description provided.