An enhancement in the (K − π + ) mass distribution at 1871 ± 10 MeV with full width of 285 ± 40 MeV is observed in the charge-exchange reaction K − p → K − π + n at 10 and 16 GeV/ c . The energy dependence of its cross section, the shape of the differential cross section d σ /d t and the decay angular distributions are consistent with a production mechanism by pion exchange. No significant enhancement at the same mass is seen in the non-charge exchange reaction K − p → (K π ) − p. The experimental evidence is reviewed and it is suggested that there may be more than one K ∗ enhancement in the 1700–1900 mass region.
FOR ALL EVENTS WITH 1.7 < M(K- PI+) < 2 GEV. NO FORWARD DIP. 'THETA CUT'.
THE 14.3 GEV/C POINT IS FROM ANALYSING THE DATA OF M. SPIRO ET AL., PL 60B, 389 (1976) IN THE SAME WAY. 'THETA-CUT'.
Cross-section values or upper limits are presented for twenty-five two-body hypercharge-exchange reactions in K − p and π + p interactions at 10 and 16 GeV/ c . The 16 GeV/ c results are compared with some predictions of line-reversal plus exchange-degenerate Regge poles, of SU(3) and of the additive quark model. Agreement is found in all cases.
No description provided.
Topological and channel cross sections are given for the more common final states produced in K − p interactions at 8.25 GeV/ c together with the single particle inclusive cross sections. We present cross sections for prominent resonances occurring in final states K N (nπ) and find the resonance fractions to be roughly independent of multiplicity.
SE FOLDED.
No description provided.
No description provided.
In the course of a systematic study of K+p interactions at 3.0 GeV/c, the elastic-scattering reaction has been investigated. A total of 1720 events were identified as elastic scatters, giving a cross-section of (4.8±0.4) mb. The angular distribution shows characteristic diffraction peaking and was fitted using dσ/d|t|=(dσ/d|t|)0 exp [αt+βt 2], in the momentum-transfer region (0.05÷1.14) (GeV/c)2. The best fit gaveα=(4.55±0.39) (GeV/c)−2 andβ=(0.64±0.42)(GeV/c)−4. The extrapolated experimental cross-section at 0°, (dσ/dt)0, is found to be (19.5±2.3) mb/(GeV/c)2, and exceeds the optical-theorem prediction by (3.8±2.3) mb/(GeV/c)2, implying that there is a contribution from the real part of the K+p scattering amplitude at 3.0 GeV/c.
No description provided.
A partial wave analysis of the non-diffractively produced ( K ̄ 0 π + π - system has been performed. The system was produced in the reaction K - p→ K ̄ 0 π + π - n at 10 GeV/ c , measured in the CERN Omega spectrometer. Besides the well-known K ∗ (1420) resonance, we find good evidence for the production of Q 2 (1400) and some indication for Q 1 (1290) production in J P =1 + . In addition we clearly observe a bump in the 1800 MeV region, the properties of which are discussed.
BR(<K RHO>/<K* PI>) FOUND TO BE 0.21 +- 0.08 AND 0.9 +- 0.3 FOR K*(1420) AND K*(1780) RESPECTIVELY.
DENSITY MATRIX FOR JP=2+ IN THE REGION 1.3 < M(K PI PI) < 1.55 GEV.
DENSITY MATRIX FOR JP=3- IN THE REGION 1.6 < M(K PI PI) < 1.9 GEV.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
A search for the flavor-changing neutral-current decay $B^{+}\to K^{+}\nu\bar{\nu}$ is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The results are based on a data sample corresponding to an integrated luminosity of $63\,\mbox{fb}^{-1}$ collected at the $\Upsilon{(4S)}$ resonance and a sample of $9\,\mbox{fb}^{-1}$ collected at an energy $60\mathrm{\,Me\kern -0.1em V}$ below the resonance. A novel measurement method is employed, which exploits topological properties of the $B^{+}\to K^{+}\nu\bar{\nu}$ decay that differ from both generic bottom-meson decays and light-quark pair production. This inclusive tagging approach offers a higher signal efficiency compared to previous searches. No significant signal is observed. An upper limit on the branching fraction of $B^{+}\to K^{+}\nu\bar{\nu}$ of $4.1 \times 10^{-5}$ is set at the 90% confidence level.
A partial-wave analysis of the diffractively produced p π + π − system has been performed for the reaction K − p→K − (p π + π − ) at 10, 14.3 and 16 GeV/ c using the isobar model. For p π + π − masses below 1.6 GeV, the system can be described by the states with spin-parity 1 2 + and 3 2 − . The dominant state is the 3 2 − S-wave Δπ . No evidence for resonance production can be found here. For higher masses, the states 5 2 + and 5 2 − are present in addition. The 5 2 − constitutes a violation of the Gribov-Morrison rule and its mass shape is consistent with being the D 15 N ∗ (1670) resonance. The peak in the p π + π − mass spectrum at 1.7 GeV cannot be explained by one single spin-parity state. A comparison of the diffractive reaction pomeron + p → p ππ with the formation experiment π p → N ππ is made.
No description provided.