abstract only
No description provided.
No description provided.
No description provided.
Final results for 3678 six-prong π+p events at 8 GeV/c are presented. Single-particle distributions are compared with the predictions of the Chan-Loskiewicz-Allison model and the phenomenological model of the F(t) function. Differences between the transverse momenta of the π+ and π− and between the transverse momenta of secondaries emitted forward and backward in the c.m. system are observed. Cross sections for production of the ρ0, ρ+, ρ−, η, ω0, X0, and D0 mesons and the N33*++ and N33*− isobars are given, together with upper limits for some other resonances. The D0 meson is observed in the seven-body channel in the ηπ+π− system, with some evidence for the cascade decay D0→δ±π∓→ηπ+π−. The branching ratio (f0→2π+2π−)(f0→2π) is determined to be (2.2−2.2+4.5)%. Upper limits for the decay of A mesons into X0π systems are quoted. The cross section for the two-body reaction π+p→N33*++X0 is determined to be 30 ± 13 μb, from which the η0−X0 mixing angle is derived. Associated production of N33*++ and ρ0 in the six-body channel and of N33*++, ρ0, and ω0 in the seven-body channel is studied, and the cross sections for reactions involving simultaneous production of these resonances are estimated. The Goldhaber-Goldhaber-Lee-Pais effect is studied and shown to be strong in the six-body channel, especially for selected events with low energy of the pion system.
INCLUDES EVENTS WHERE SOME OF THE PARTICLES OR RESONANCES LISTED MAY BE R ESONATING WITH EACH OTHER. FITTED DISTRIBUTION WITH FIXED MASS AND WIDTH. [MASS = .549 GEV; WIDT H = .046], AND THEN TOOK ONLY EVENTS ABOVE (FITTED) BACKGROUND.. DATA FROM T 8. ETA PRODUCED THROUGH THE X0 MESON IS EXCLUDED.
INCLUDES EVENTS WHERE SOME OF THE PARTICLES OR RESONANCES LISTED MAY BE R ESONATING WITH EACH OTHER. FITTED FOR MASS AND/OR WIDTH. [MASS = .965 GEV; WIDTH = .004], AND THEN TOOK ONLY EVENTS ABOVE (FITTED) BACKGROUND.. MADE SIMPLE MASS CUT (NEGLIGIBLE BACKGROUND). [MASS CUT FROM .500 TO .600 GEV].. DATA FROM T 8. ERRORS CORRESPOND TO 68 PERCENT CONFIDENCE LEVEL.
INCLUDES EVENTS WHERE SOME OF THE PARTICLES OR RESONANCES LISTED MAY BE R ESONATING WITH EACH OTHER. FITTED FOR MASS AND/OR WIDTH. [MASS = 1.329 GEV; WIDTH = .052], AND THEN TOOK ONLY EVENTS ABOVE (FITTED) BACKGROUND.. DATA FROM T 8. ERRORS CORRESPOND TO 68 PERCENT CONFIDENCE LEVEL.
Production of the D O meson and its decay into ηπ + π − is observed in the reaction π + p → p π + π + π + π − π − π O at 8 GeV c . Indications for the decay mode D O → δ ± π ∓→ ηπ + π − are presented. The cross section for the two-body reaction π + p → N ∗++ (1236) D O is estimated.
No description provided.
Inclusive spectra of π − production for pp interactions are discussed at 69 GeV/ c both in the central and in the fragmentation region and are compared to data at lower and higher energies. The p T dependence of the invariant structure function is also analysed.
We present the inclusive and semi-inclusive production of protons, π+, π−, for the full range of kinematic variables, from 7850 inelastic interactions obtained in the 4.7 m liquid-hydrogen bubble chamber Mirabelle at the Serpukhov accelerator and with an incident proton beam of 69 GeV/c. We compare the data with those at other energies, and we give the results of different phenomenological fits.
Correlations between pions produced in pp collisions at 69 GeV/c are observed both for π−π+ and π−π−. Short-range correlations in rapidity are present fory1⋍y2 in both cases; an enhancement is seen aroundy1=y2=±1. Correlations between transverse variables are linked to those in rapidity for π−π− combinations, whereas the effect is essentially kinematical for π+π−.
No description provided.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
A search for the flavor-changing neutral-current decay $B^{+}\to K^{+}\nu\bar{\nu}$ is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The results are based on a data sample corresponding to an integrated luminosity of $63\,\mbox{fb}^{-1}$ collected at the $\Upsilon{(4S)}$ resonance and a sample of $9\,\mbox{fb}^{-1}$ collected at an energy $60\mathrm{\,Me\kern -0.1em V}$ below the resonance. A novel measurement method is employed, which exploits topological properties of the $B^{+}\to K^{+}\nu\bar{\nu}$ decay that differ from both generic bottom-meson decays and light-quark pair production. This inclusive tagging approach offers a higher signal efficiency compared to previous searches. No significant signal is observed. An upper limit on the branching fraction of $B^{+}\to K^{+}\nu\bar{\nu}$ of $4.1 \times 10^{-5}$ is set at the 90% confidence level.
Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.