The measurements of the Collins and Sivers asymmetries of identified hadrons produced in deep-inelastic scattering of 160 GeV/c muons on a transversely polarised 6LiD target at COMPASS are presented. The results for charged pions and charged and neutral kaons correspond to all data available, which were collected from 2002 to 2004. For all final state particles both the Collins and Sivers asymmetries turn out to be small, compatible with zero within the statistical errors, in line with the previously published results for not identified charged hadrons, and with the expected cancellation between the u- and d-quark contributions.
The Collins and Sivers asymmetry as a function of X for 'ALL' positive pions from the 2003-2004 data.. Errors are statistical only.
The Collins and Sivers asymmetry as a function of PT for 'ALL' positive pions from the 2003-2004 data.. Errors are statistical only.
The Collins and Sivers asymmetry as a function of Z for 'ALL' positive pions from the 2003-2004 data.. Errors are statistical only.
First measurements of balance functions (BFs) of all combinations of identified charged hadron $(\pi,\rm K,\rm p)$ pairs in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV recorded by the ALICE detector are presented. The BF measurements are carried out as two-dimensional differential correlators versus the relative rapidity ($\Delta y$) and azimuthal angle ($\Delta\varphi$) of hadron pairs, and studied as a function of collision centrality. The $\Delta\varphi$ dependence of BFs is expected to be sensitive to the light quark diffusivity in the quark$-$gluon plasma. While the BF azimuthal widths of all pairs substantially decrease from peripheral to central collisions, the longitudinal widths exhibit mixed behaviors: BFs of $\pi\pi$ and cross-species pairs narrow significantly in more central collisions, whereas those of $\rm KK$ and $\rm pp$ are found to be independent of collision centrality. This dichotomy is qualitatively consistent with the presence of strong radial flow effects and the existence of two stages of quark production in relativistic heavy-ion collisions. Finally, the first measurements of the collision centrality evolution of BF integrals are presented, with the observation that charge balancing fractions are nearly independent of collision centrality in Pb$-$Pb collisions. Overall, the results presented provide new and challenging constraints for theoretical models of hadron production and transport in relativistic heavy-ion collisions.
Balance function $B^{\pi\pi}$ measured in semicentral Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$ ($\pi,{\rm K}: 0.2 \leq p_{\rm T} \leq 2.0\;{\rm GeV}/c$; ${\rm p}: 0.5 \leq p_{\rm T} \leq 2.5\;{\rm GeV}/c$).
Balance function $B^{{\rm KK}}$ measured in semicentral Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$ ($\pi,{\rm K}: 0.2 \leq p_{\rm T} \leq 2.0\;{\rm GeV}/c$; ${\rm p}: 0.5 \leq p_{\rm T} \leq 2.5\;{\rm GeV}/c$).
Balance function $B^{{\rm p\bar{p}}}$ measured in semicentral Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$ ($\pi,{\rm K}: 0.2 \leq p_{\rm T} \leq 2.0\;{\rm GeV}/c$; ${\rm p}: 0.5 \leq p_{\rm T} \leq 2.5\;{\rm GeV}/c$).
Understanding the production mechanism of light (anti)nuclei is one of the key challenges of nuclear physics and has important consequences for astrophysics, since it provides an input for indirect dark-matter searches in space. In this paper, the latest results about the production of light (anti)nuclei in pp collisions at $\sqrt{s} = 13$ TeV are presented, focusing on the comparison with the predictions of coalescence and thermal models. For the first time, the coalescence parameters $B_2$ for deuterons and $B_3$ for helions are compared with parameter-free theoretical predictions that are directly constrained by the femtoscopic measurement of the source radius in the same event class. A fair description of the data with a Gaussian wave function is observed for both deuteron and helion, supporting the coalescence mechanism for the production of light (anti)nuclei in pp collisions. This method paves the way for future investigations of the internal structure of more complex nuclear clusters, including the hypertriton.
(Anti)proton spectrum in HM V0M multiplicity class
(Anti)proton spectrum in HM I V0M multiplicity class
(Anti)proton spectrum in HM II V0M multiplicity class
Annihilation dynamics plays a fundamental role in the baryon$-$antibaryon interaction (B$-\rm{\overline{B}}$) at low-energy and its strength and range are crucial in the assessment of possible baryonic bound states. Experimental data on annihilation cross sections are available for the p$-\rm{\overline{p}}$ system but not in the low relative momentum region. Data regarding the B$-\rm{\overline{B}}$ interaction with strange degrees of freedom are extremely scarce, hence the modeling of the annihilation contributions is mainly based on nucleon$-$antinucleon (N$-\rm{\overline{N}}$) results, when available. In this letter we present a measurement of the p$-\rm{\overline{p}}$, p$-\overline{\Lambda}\oplus\rm{\overline{p}}-\Lambda$ and $\Lambda-\overline{\Lambda}$ interaction using correlation functions in the relative momentum space in high-multiplicity triggered pp collisions at $\sqrt{s} = 13$ TeV recorded by ALICE at the LHC. In the p$-\rm{\overline{p}}$ system the couplings to the mesonic channels in different partial waves are extracted by adopting a coupled-channel approach with recent $\chi\rm{EFT}$ potentials. The inclusion of these inelastic channels provides good agreement with the data, showing a significant presence of the annihilation term down to zero momentum. Predictions obtained using the Lednický$-$Lyuboshits formula and scattering parameters obtained from heavy-ion collisions, hence mainly sensitive to elastic processes, are compared with the experimental p$-\overline{\Lambda}\oplus\rm{\overline{p}}-\Lambda$ and $\Lambda-\overline{\Lambda}$ correlations. The model describes the $\Lambda-\overline{\Lambda}$ data and underestimates the p$-\overline{\Lambda}\oplus\rm{\overline{p}}-\Lambda$ data in the region of momenta below 200 MeV/$c$. The observed deviation indicates a different contribution of annihilation channels to the two systems containing strange hadrons.
$p-\overline{p}$ correlation function in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.
$C_{background}$ correlation for $p-\overline{p}$ pairs assuming chiral potentials with annihilation channels in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.
$p-\overline{\Lambda}\oplus \Lambda-\overline{p}$ correlation function in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV for the trasverse mass bin $1.65 < m_T < 1.9$ GeV/$c^2$.
Recent $p_{\rm T}$-integrated cross section measurements of the ground-state charm mesons and baryons, D$^{\rm 0}$, D$^+$, D$_{\rm s}^{+}$, $\Lambda_{\rm c}^{+}$, and $\Xi_{\rm c}^0$, are used to evaluate the charm fragmentation fractions and production cross section per unit of rapidity at midrapidity ($|y|<0.5$), in pp collisions at $\sqrt{s} = 5.02$ TeV at the LHC. The latter is ${\rm d} \sigma^{\rm c \overline{c}}/{\rm d} y|_{|y| < 0.5}$ =1165 $\pm 44(\rm{stat})^{+134}_{-101}(\rm{syst})$$\mu b$. These measurements were obtained for the first time in hadronic collisions at the LHC including the charm baryon states, recently measured by ALICE at midrapidity. The charm fragmentation fractions differ significantly from the values measured in e$^+$e$^-$ and ep collisions, providing evidence of the dependence of the parton-to-hadron fragmentation fractions on the collision system, indicating that the assumption of their universality is not supported by the measured cross sections. An increase of a factor of about 3.3 for the fragmentation fraction for the $\Lambda_{\rm c}^{+}$ with a significance of $5\,\sigma$ between the values obtained in pp collisions and those obtained in e$^+$e$^-$ (ep) collisions is reported. The fragmentation fraction for the $\Xi_{\rm c}^0$ was obtained for the first time in any collision system. The measured fragmentation fractions were used to update the $\rm c \overline{c}$ cross sections per unit of rapidity at $|y|<0.5$ at $\sqrt{s} = 2.76$ and 7 TeV, which are about 40% higher than the previously published results. The data were compared with perturbative-QCD calculations and lie at the upper edge of the theoretical bands.
Ratio of prompt open-charm hadrons H$_\mathrm{c}$ and inclusive $\mathrm{J}/\psi$ mesons over D$^0$-meson production cross section in pp collisions at $\sqrt{s} = 5.02$ TeV.
Fragmentation fractions of charm quark to open-charm hadrons $f(\mathrm{c \rightarrow H_c})$ in pp collisions at $\sqrt{s} = 5.02$ TeV.
Production cross section of charm-anticharm quark pairs per unity of rapidity at midrapidity $\mathrm{d}\sigma^{\mathrm{c\overline{c}}}/\mathrm{d}y|_{|y| < 0.5}$ in pp collisions at $\sqrt{s} = 2.76$, $5.02$, and $7$ TeV.
The production of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ resonances has been measured in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV using the ALICE detector. Resonances are reconstructed via their hadronic decay channels in the rapidity interval $-$0.5 $<$$y$$<$ 0 and the transverse momentum spectra are measured for various multiplicity classes up to $p_{\rm T}$ = 20 GeV/$c$ for $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $p_{\rm T}$ = 16 GeV/$c$ for $\mathrm{\phi(1020)}$. The $p_{\rm T}$ -integrated yields and mean transverse momenta are reported and compared with previous results in pp, p-Pb and Pb-Pb collisions. The $x_{\mathrm{T}}$ scaling for $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ resonance production is newly tested in p-Pb collisions and found to hold in the high-$p_{\rm T}$ region at LHC energies. The nuclear modification factors ($R_{\rm pPb}$) as a function of $p_{\rm T}$ for $\mathrm{K}^{*0}$ and $\mathrm{\phi}$ at $\sqrt{s_{NN}}$ = 8.16 TeV are presented along with the new $R_{\rm pPb}$ measurements of $\mathrm{K}^{*0}$, $\mathrm{\phi}$ , $\Xi$, and $\Omega$ at $\sqrt{s_{\rm NN}}$ = 5.02 TeV. At intermediate $p_{\rm T}$ (2-8 GeV/$c$), $R_{\rm pPb}$ of $\Xi$, $\Omega$ show a Cronin-like enhancement, while $\mathrm{K}^{*0}$ and $\mathrm{\phi}$ show no or little nuclear modification. At high $p_{\rm T}$ ($>$ 8 GeV/$c$), the $R_{\rm pPb}$ values of all hadrons are consistent with unity within uncertainties. The $R_{\rm pPb}$ of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ at $\sqrt{s_{\rm NN}}$ = 8.16 and 5.02 TeV show no significant energy dependence.
$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$8.16 TeV (NSD).
$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$8.16 TeV (Multiplicity class 0-5%).
$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$8.16 TeV (Multiplicity class 5-10%).
The production yield and angular anisotropy of prompt ${D_s^+}$ mesons were measured as a function of transverse momentum ($p_{ T}$) in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{ NN}} = 5.02$ TeV collected with the ALICE detector at the LHC. ${D_s^+}$ mesons and their charge conjugates were reconstructed at midrapidity ($|y|<0.5$) from their hadronic decay channel ${D_s^+ \to \phi \pi^+}$, with ${\phi \to K^-K^+}$, in the $p_{ T}$ intervals $2<p_{ T}<50$ GeV/$c$ and $2<p_{ T}<36$ GeV/$c$ for the 0-10% and 30-50% centrality intervals. For $p_{ T}>10$ GeV/$c$, the measured ${D_s^+}$-meson nuclear modification factor $R_{ AA}$ is consistent with the one of non-strange D mesons within uncertainties, while at lower $p_{ T}$ a hint for a ${D_s^+}$-meson $R_{ AA}$ larger than that of non-strange D mesons is seen. The enhanced production of ${D_s^+}$ relative to non-strange D mesons is also studied by comparing the $p_{ T}$-dependent ${D_s^+/D^0}$ production yield ratios in Pb-Pb and in pp collisions. The ratio measured in Pb-Pb collisions is found to be on average higher than that in pp collisions in the interval $2<p_{ T} <8$ GeV/$c$ with a significance of 2.3$\sigma$ and 2.4$\sigma$ for the 0-10% and 30-50% centrality intervals. The azimuthal anisotropy coefficient $v_2$ of prompt ${D_s^+}$ mesons was measured in Pb-Pb collisions in the 30-50% centrality interval and is found to be compatible with that of non-strange D mesons. The main features of the measured $R_{ AA}$, ${D_s^+/D^0}$ ratio, and $v_2$ as a function of $p_{ T}$ are described by theoretical calculations of charm-quark transport in a hydrodynamically expanding quark-gluon plasma including hadronisation via charm-quark recombination with light quarks from the medium. The $p_{ T}$-integrated production yield of ${D_s^+}$ mesons is compatible with the prediction of the statistical hadronisation model.
$p_\mathrm{T}$-differential production yield of prompt $\mathrm{D_s^+}$ mesons in the 0-10% centrality class in Pb-Pb collisions at $\sqrt{{s_\mathrm{NN}}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.5$. Branching ratio of $\mathrm{D_s^+\to \phi\pi^+\to K^-K^+\pi^+}$: 0.0224
$p_\mathrm{T}$-differential production yield of prompt $\mathrm{D_s^+}$ mesons in the 0-10% centrality class in Pb-Pb collisions at $\sqrt{{s_\mathrm{NN}}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.5$. Branching ratio of $\mathrm{D_s^+\to \phi\pi^+\to K^-K^+\pi^+}$: 0.0224
$p_\mathrm{T}$-differential production yield of prompt $\mathrm{D_s^+}$ mesons in the 30-50% centrality class in Pb-Pb collisions at $\sqrt{{s_\mathrm{NN}}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.5$. Branching ratio of $\mathrm{D_s^+\to \phi\pi^+\to K^-K^+\pi^+}$: 0.0224
The first measurements of dielectron production at midrapidity ($|\eta_{c}|<0.8$) in proton-proton and proton-lead collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV at the LHC are presented. The dielectron cross section is measured with the ALICE detector as a function of the invariant mass $m_{\rm{ee}}$ and the pair transverse momentum $p_{\rm{T,ee}}$ in the ranges $m_{\rm{ee}}$ < 3.5 GeV/$c^{2}$ and $p_{\rm{T,ee}}$ < 8.0 GeV/$c^{2}$, in both collision systems. In proton-proton collisions, the charm and beauty cross sections are determined at midrapidity from a fit to the data with two different event generators. This complements the existing dielectron measurements performed at $\sqrt{s}$ = 7 and 13 TeV. The slope of the $\sqrt{s}$ dependence of the three measurements is described by FONLL calculations. The dielectron cross section measured in proton-lead collisions is in agreement, within the current precision, with the expected dielectron production without any nuclear matter effects for $\rm{e}^{+}\rm{e}^{-}$ pairs from open heavy-flavor hadron decays. For the first time at LHC energies, the dielectron production in proton-lead and proton-proton collisions are directly compared at the same $\sqrt{s_{\rm{NN}}}$ via the dielectron nuclear modification factor $R_{\rm{pPb}}$. The measurements are compared to model calculations including cold nuclear matter effects, or additional sources of dielectrons from thermal radiation.
Charm production cross section at midrapidity
Measurements of elliptic ($v_2$) and triangular ($v_3$) flow coefficients of $\pi^{\pm}$, K$^{\pm}$, p+$\rm \overline{p}$, K$^0_{\rm S}$, and $\Lambda + \overline{\Lambda}$ obtained with the scalar product method in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV are presented. The results are obtained in the rapidity range $\left | y \right |<0.5$ and reported as a function of transverse momentum, $p_{\rm T}$, for several collision centrality classes. The flow coefficients exhibit a particle mass dependence for $p_{\rm T}<3$ GeV/$c$, while a grouping according to particle type (i.e., meson and baryon) is found at intermediate transverse momenta (3< $p_{\rm T}$ <8 GeV/$c$). The magnitude of the baryon $v_{2}$ is larger than that of mesons up to $p_{\rm T}$ = 6 GeV/$c$. The centrality dependence of the shape evolution of the $p_{\rm T}$-differential $v_2$ is studied for the various hadron species. The $v_2$ coefficients of $\pi^{\pm}$, K$^{\pm}$, and p+$\rm \overline{p}$ are reproduced by MUSIC hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) for $p_{\rm T} <1$ GeV/$c$. A comparison with $v_{\rm n}$ measurements in the corresponding centrality intervals in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV yields an enhanced $v_2$ in central collisions and diminished value in semicentral collisions.
$v_2\{2, |\Delta\eta| > 2.0\}$ of $\pi^{\pm}$ as a function of $p_{\rm T}$ for the 0-5% centrality interval.
$v_2\{2, |\Delta\eta| > 2.0\}$ of $\pi^{\pm}$ as a function of $p_{\rm T}$ for the 5-10% centrality interval.
$v_2\{2, |\Delta\eta| > 2.0\}$ of $\pi^{\pm}$ as a function of $p_{\rm T}$ for the 10-20% centrality interval.
The production of prompt D$^{0}$, D$^{+}$, and D$^{*+}$ mesons was measured at midrapidity (|y|< 0.5) in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decay channels and their production yields were measured in central (0-10%) and semicentral (30-50%) collisions. The measurement was performed up to a transverse momentum ($p_{\rm T}$) of 36 or 50 GeV/$c$ depending on the D meson species and the centrality interval. For the first time in Pb-Pb collisions at the LHC, the yield of D$^0$ mesons was measured down to $p_{\rm T}$ = 0, which allowed a model-independent determination of the $p_{\rm T}$-integrated yield per unit of rapidity (d$N$/d$y$). A maximum suppression by a factor 5 and 2.5 was observed with the nuclear modification factor ($R_{\rm AA}$) of prompt D mesons at $p_{\rm T}$ = 6-8 GeV/$c$ for the 0-10% and 30-50% centrality classes, respectively. The D-meson $R_{\rm AA}$ is compared with that of charged pions, charged hadrons, and J/$\psi$ mesons as well as with theoretical predictions. The analysis of the agreement between the measured $R_{\rm AA}$, elliptic ($v_2$) and triangular ($v_3$) flow, and the model predictions allowed us to constrain the charm spatial diffusion coefficient $D_s$. Furthermore the comparison of $R_{\rm AA}$ and $v_2$ with different implementations of the same models provides an important insight into the role of radiative energy loss as well as charm quark recombination in the hadronisation mechanisms.
Transverse momentum distributions d$N$/(d$y$d$p_{\mathrm{T}}$) of prompt D$^{0}$ (left) meson in the 0-10% (crosses) centrality classes in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV in |y|<0.5. The uncertainties on the BRs are quoted separately and the horizontal bars represent bin widths. Branching ratio of D$^0$ --> K$\pi$ = 0.0395
Transverse momentum distributions d$N$/(d$y$d$p_{\mathrm{T}}$) of prompt D$^{0}$ (left) meson in the 30-50% (diamonds) centrality classes in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV in |y|<0.5. The uncertainties on the BRs are quoted separately and the horizontal bars represent bin widths. The points in the figure of the paper are scaled for visibility by a factor 10$^{-1}$. Branching ratio of D$^0$ --> K$\pi$ = 0.0395
Transverse momentum distributions d$N$/(d$y$d$p_{\mathrm{T}}$) of prompt D$^{+}$ (middle) meson in the 0-10% (crosses) centrality classes in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV in |y|<0.5. The uncertainties on the BRs are quoted separately and the horizontal bars represent bin widths. Branching ratio of D$^+$ --> K$\pi\pi$ = 0.0938