Total cross sections have been measured for H, He, 6 Li, C, O and Pb targets for 1 GeV incident energy protons. From the differential elastic scattering data published elsewhere, we also obtain the total elastic scattering and reaction cross sections for H, He, C and O. When our data are combined with other measurements in the same energy region, it is found that the total and reaction cross sections can be fit by the formulae σ T = 47 A 0.82 and σ R = 42 A 0.67 mb. It is also observed that the total and reaction cross sections for negative pions on nuclei can also be fit with these same A -dependencies.
No description provided.
Results from π± elastic and inelastic scattering from C12 and Ca40 are reported. The data were all taken at an incident momentum of 800 MeV/c over an angular range from 4° to 38°. The elastic data are compared to first-order optical model calculations in momentum space; qualitative agreement is obtained. The inelastic data (from C12 only) are compared to distorted-wave Born approximation calculations, and reasonable agreement is found if realistic inelastic transition densities are used.
No description provided.
THE C12* NUCLEUS IS IN THE STATE 2+ (4.4 MEV).
THE C12* NUCLEUS IS IN THE STATE 3- (9.6 MEV).
Results from K± elastic and inelastic scattering from C12 and Ca40 are reported. The data were all taken at an incident momentum of 800 MeV/c over an angular range from 2° to 38°. The elastic data are compared to first-order optical model calculations in coordinate and momentum space; good qualitative agreement is obtained. The inelastic data (from C12 only) are compared to distorted-wave Born approximation calculations, and good agreement is found if "realistic" inelastic transition densities are used. Although a first-order optical potential description does not describe the data fully, there are strong indications of the increased penetrability of K+ over K− in this energy range. NUCLEAR REACTIONS C12(K±,K±)C12, Ca40(K±,K±)Ca40, E=442 MeV (800 MeV/c), measured σ(θ) for elastic and inelastic scattering, compared to optical model and DWBA calculations, deduced optical potential parameters; θ=2°−38°, Δθ=1°.
X ERROR D(THETA) = 1.0100 DEG.
X ERROR D(THETA) = 1.0100 DEG.
X ERROR D(THETA) = 1.1000 DEG.
None
'1'. '2'.
No description provided.
No description provided.
The emission of protons from targets of Li6, Li, C12, Al27, Ca40, V51, Zr90, and Pb under bombardment from 800 MeV protons has been studied using a high resolution proton spectrometer. Spectra were measured at laboratory scattering angles of 5°, 7°, 9°, 11°, 13°, 15°, 20°, 25°, and 30° with special emphasis on the quasifree region. Outgoing momenta corresponding to the region of pion production were examined at 11° and 15°. Absolute cross sections have been derived by reference to known (p,p) scattering data at 800 MeV. The quasifree scattering has been compared to a distorted-wave impulse approximation analysis by summing over the unobserved (struck) nucleon. The systematics of proton production and the applicability of the distorted-wave impulse approximation analyses are discussed. NUCLEAR REACTIONS (p,p′) on Li6, Li, C12, Al27, Ca40, V51, Zr90, Pb; Ep=800 MeV, θL=5° to 30°; quasielastic scattering, DWIA analysis.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.5%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.5%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.
None
'1'. '2'.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.