We report on the measurement of W-boson pair-production with the L3 detector at LEP at a centre-of-mass energy of 161.34 GeV. In a data sample corresponding to a total luminosity of 11 pb −1 , we select four-fermion events with high invariant masses of pairs of hadronic jets or leptons. Combining all final states, the measured total cross section for W-pair production is: sigma WW = 2.89 −0.70 +0.81 (stat.) ± 0.14 (syst.) pb. Within the Standard Model, this corresponds to a mass of the W boson of: M W = 80.80 −0.42 +0.48 (exp.) ± 0.03 (LEP) GeV. Limits on anomalous triple-vector-boson couplings are derived.
No description provided.
No description provided.
We have measured the ZZ-gamma and Z-gamma-gamma couplings by studying p-bar p -> (missing ET) gamma + X events at sqrt(s)=1.8 TeV with the D0 detector at the Fermilab Tevatron Collider. This first study of hadronic Z-gamma production in the neutrino decay channel gives the most stringent limits on anomalous couplings available. A fit to the transverse energy spectrum of the photon in the candidate event sample, based on a data set corresponding to an integrated luminosity of 13.1 pb~(-1), yields 95% CL limits on the anomalous CP-conserving ZZ-gamma couplings of |h~Z_(30)|<0.9, |h~Z_(40)|<0.21, for a form-factor scale Lambda = 500 GeV. Combining these results with our previous measurement using Z -> ee and mu-mu yields the limits:|h~Z_(30)|<0.8, |h~Z_(40)|<0.19 (Lambda = 500 GeV) and |h~Z_(30)|<0.4, |h~Z_(40)|<0.06 (Lambda = 750 GeV).
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.. The data with Z --> lepton+ lepton- is taken from S.Abachi, PRL 75, 1028.
A study is presented of the process gamma p -->XY, where there is a large rapidity gap between the systems X and Y. Measurements are made of the differential cross section as a function of the invariant mass mx of the system produced at the photon vertex. Results are presented at centre of mass energies of W_gp = 187 GeV and W_gp = 231 GeV, both where the proton dominantly remains intact and, for the first time, where it dissociates. Both the centre of mass energy and the mx~2 dependence of HERA data and those from a fixed target experiment may simultaneously be described in a triple-Regge model. The low mass photon dissociation process is found to be dominated by diffraction, though a sizable subleading contribution is present at larger masses. The pomeron intercept is extracted and found to be alpha_pom(0) = 1.068 \pm 0.016 (stat.) \pm 0.022 (syst.) \pm 0.041 (model), in good agreement with values obtained from total and elastic hadronic and photoproduction cross sections. The diffractive contribution to the process gamma p --> Xp with mx~2 / W_gp~2 < 0.05 is measured to be 22.2 \pm 0.6 (stat.) \pm 2.6 (syst.) \pm 1.7 (model) % of the total gamma p cross section at W_gp = 187 GeV.
Data for proton remaining intact.
Data for proton dissociating.
Inclusive photoproduction of $\dspm$ in ep collisions at HERA has been measured with the ZEUS detector for photon-proton centre of mass energies in the range \linebreak \wrang and photon virtuality Q~2 < 4 \g2. The cross section $\sigma_{ep \to \ds X} $ integrated over the kinematic region \ptrangand \etarang is {\xsecs}. Differential cross sections as functions of $p_{\perp}~{\ds}$, $\eta~{\ds}$ and W are given. The data are compared with two next-to-leading order perturbative QCD predictions. For a calculation using a massive charm scheme the predicted cross sections are smaller than the measured ones. A recent calculation using a massless charm scheme is in agreement with the data.
Data from the (Kpi)pi channel.
Data from the (Kpipipi)pi channel.
Data from the (Kpi)pi channel.
We have measured the spin-dependent structure function $g_1~p$ in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003 < x < 0.7$ and $1 GeV~2 < Q~2 < 60 GeV~2$. A next-to-leading order QCD analysis is used to evolve the measured $g_1~p(x,Q~2)$ to a fixed $Q~2_0$. The first moment of $g_1~p$ at $Q~2_0 = 10 GeV~2$ is $\Gamma~p = 0.136\pm 0.013(stat.) \pm 0.009(syst.)\pm 0.005(evol.)$. This result is below the prediction of the Ellis-Jaffe sum rule by more than two standard deviations. The singlet axial charge $a_0$ is found to be $0.28 \pm 0.16$. In the Adler-Bardeen factorization scheme, $\Delta g \simeq 2$ is required to bring $\Delta \Sigma$ in agreement with the Quark-Parton Model. A combined analysis of all available proton and deuteron data confirms the Bjorken sum rule.
Data for Q**2 > 1 GeV**2.
Data for Q**2 > 0.2 GeV**2.
Statistical errors only.
We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.
Determination of alpha_s.
Multiplicity and higher moments.
Thrust distribution.
The angular dependence of the pp elastic scattering analyzing power was measured at SATURNE II with an unpolarized proton beam and the Saclay polarized proton target. The energy region in the vicinity of the accelerator depolarizing resonance Gγ = 6 at Tkin = 2.202 GeV was studied. Measurements were carried out at seven energies between 2.16 and 2.28 GeV from 17° to 55°CM. No significant anomaly was observed in the angular and energy dependence of the results presented, whereas the existing data sets differ in this energy range.
Additional random-like systematic error of 1.1 PCT.
Additional random-like systematic error of 9.9PCT.
Additional random-like systematic error of 0.2PCT.
Using data collected from 1992 to 1995 with the ALEPH detector at LEP, a measurement of the colour factor ratios CA/CF and TF /CF and the strong coupling constant αs = CFαs(MZ)/(2π) has been performed by fitting theoretical predictions simultaneously to the measured differential two-jet rate and angular distributions in four-jet events. The result is found to be in excellent agreement with QCD, {fx4-1} Fixing CA/CF and TF/CF to the QCD values permits a determination of αs(MZ) and ηf, the number of active flavours. With this measurement the existence of a gluino with mass below 6.3 GeV/c2 is excluded at 95% confidence level.
Fit A: using all kinematical distributions. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.
Fit B: using all kinematical distributions, but QCD magnitudes for color factors are used: FA(DEF=NC/CF)) = 2.25 and TF/CF = 0.375. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.
Fit C: the QCD magnitudes for color factors and NF = 5 are used.
The double strangeness exchange reaction ( K − , K + ) is investigated with respect to the sub-threshold production of scalar and vector mesons ( f 0 / a 0 / φ ) decaying into K + K − and the two-step processes induced by intermediate mesons and Ξ − hyperons at p k − = 1.66 GeV/ c using a scintillating fiber active target. The differential cross section ( 〈 dσ dΩ L 〉) averaged over the angular interval (2.3° ⩽ θ K + L ⩽ 14.7°) for the sub-threshold f 0 / a 0 / φ meson production with the K + K − decay is 11 ± 6 μ b/sr at 0.6 ⩽ p K 1 < 0.95 GeV/ c . The present result differs significantly from the theoretical calculation which predicts the contribution of the f 0 / a 0 / φ meson production to be predominant in the ( K − , K + ) reaction below p K + = 0.95 GeV/ c . We found a sizable contribution from two-step ( K − , K + processes, characterized by production of two S = −1 hyperons, consistent with the result of the intra-nuclear cascade (INC) model calculation with respect to the meson-induced hyperon (or hyperon resonance) pair production in the momentum region 0.6 ⩽ p K + < 0.95 GeV/ c . The observed enhancement of the cross section for the two-step ΛΛ production beyond the prediction of the INC model at p K + ⋍ 1.1 GeV /c could be due to the Ξ − p → ΛΛ reaction in 12 C.
No description provided.
No description provided.
No description provided.
In 1996 LEP ran at a centre-of-mass energy of 161 GeV, just above the threshold of W-pair production. DELPHI accumulated data corresponding to an integrated luminosity of 9.93 pb −1 , and observed 29 events that are considered as candidates for W-pair production. From these, a cross-section for the doubly resonant e + e − → WW process of 3.67 −0.85 +0.97 ± 0.19 pb has been measured. Within the Standard Model, this cross-section corresponds to a mass of the W-boson of 80.40 ± 0.44 (stat.) ± 0.09 (syst.) ± 0.03 (LEP) GeV/ c 2 . Alternatively, if m W is held fixed at its current value determined by other experiments, the observed cross-section is used to obtain limits on trilinear WWV (V ≡ γ, Z) couplings.
No description provided.