Measurements of the proton and deuteron spin structure functions g1 and g2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.D 58 (1998) 112003, 1998.
Inspire Record 467140 DOI 10.17182/hepdata.22265

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.

33 data tables

Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

More…

Deep Inelastic Scattering of Polarized Electrons by Polarized $^3$He and the Study of the Neutron Spin Structure

The E142 collaboration Anthony, P.L. ; Arnold, R.G. ; Band, H.R. ; et al.
Phys.Rev.D 54 (1996) 6620-6650, 1996.
Inspire Record 424108 DOI 10.17182/hepdata.22340

The neutron longitudinal and transverse asymmetries $A^n_1$ and $A^n_2$ have been extracted from deep inelastic scattering of polarized electrons by a polarized $^3$He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions $g^n_1 (x,Q^2)$ and $g^n_2(x,Q^2)$ over the range $0.03 < x < 0.6$ at an average $Q^2$ of 2 (GeV$/c)^2$. The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function $g^n_1 (x,Q^2)$ is small and negative within the range of our measurement, yielding an integral ${\int_{0.03}^{0.6} g_1^n(x) dx}= -0.028 \pm 0.006 (stat) \pm 0.006 (syst) $. Assuming Regge behavior at low $x$, we extract $\Gamma_1^n=\int^1_0 g^n_1(x)dx = -0.031 \pm 0.006 (stat)\pm 0.009 (syst) $. Combined with previous proton integral results from SLAC experiment E143, we find $\Gamma_1^p - \Gamma_1^n = 0.160 \pm 0.015$ in agreement with the Bjorken sum rule prediction $\Gamma^p_1 - \Gamma ^n_1 = 0.176 \pm 0.008$ at a $Q^2$ value of 3 (GeV$/c)^2$ evaluated using $\alpha_s = 0.32\pm 0.05$.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the proton and deuteron spin structure function g1 in the resonance region.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 78 (1997) 815-819, 1997.
Inspire Record 426735 DOI 10.17182/hepdata.19582

We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 &lt; 5 GeV^2 and $Q^2\simeq 0.5$ and $Q^2\simeq 1.2$ GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized $^{15}NH_3$ and $^{15}ND_3$ targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract $\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx$. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.

8 data tables

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the full W region including the deep-inelastic region as given by fits to the world's data.

More…

Determination of the neutron spin structure function..

The E142 collaboration Anthony, P.L. ; Arnold, R.G. ; Band, H.R. ; et al.
Phys.Rev.Lett. 71 (1993) 959-962, 1993.
Inspire Record 359353 DOI 10.17182/hepdata.19693

The spin structure function of the neutron g1n has been determined over the range 0.03<x<0.6 at an average Q2 of 2 (GeV/c)2 by measuring the asymmetry in deep inelastic scattering of polarized electrons from a polarized He3 target at energies between 19 and 26 GeV. The integral of the neutron spin structure function is found to be F01g1n(x)dx=-0.022±0.011. Earlier reported proton results together with the Bjorken sum rule predict F01g1n(x)dx=-0.059±0.019.

2 data tables

No description provided.

Extrapolarity to full x range.