The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.
The jet differential cross section as a function of jet $p_T$. Statistical uncertainties are typically smaller than the data points while systematic uncertainties are shown with boxes. An overall normalization systematic of 7% is not included in the point-by-point systematic uncertainties.
Distribution of the SoftDrop groomed momentum fraction $z_g$ for different jet $p_T$ bins. Standard SoftDrop parameters were used ($z_{cut}<0.1$ and $\beta=0$).
$\xi$ distributions for different jet $p_T$ bins.
A study on the Bose-Einstein correlations for triplets of same-sign pions is presented. The analysis is performed using proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 7 TeV, recorded by the LHCb experiment, corresponding to an integrated luminosity of 1.0 fb$^{-1}$. For the first time, the results are interpreted in the core-halo model. The parameters of the model are determined in regions of charged-particle multiplicity. This measurement provides insight into the nature of hadronisation in terms of coherence, showing a coherent emission of pions.
Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 5-10.
Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 11-20.
Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 21-60.
The LHCb collaboration presents a novel suite of heavy-flavour jet substructure measurements at forward rapidity in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The jet mass is a perturbatively calculable probe of the virtuality of hard-scattered quarks and gluons, connecting small-distance quantum chromodynamics (QCD) with long-distance experimental measurement. It becomes dominated by nonperturbative corrections at small values, presenting an excellent test of QCD across a broad range of energies. Measuring heavy-flavour jet mass with a theoretically unambiguous flavour definition for the first time probes the gluon splitting mechanism for heavy-flavour production and pushes tests of perturbative QCD to unprecedented theoretical precision. Utilising the soft drop jet-grooming technique to access the perturbative jet core further enhances constraints on first-principles theory. Measurements of the jet mass for jets containing fully reconstructed $B^\pm$ hadrons are reported with and without grooming. These results offer unparalleled tests of quark flavour and mass dependence in QCD and provide a baseline for future studies of heavy-flavour jet quenching in heavy-ion collisions.
Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $10 < p_{\textrm{T,jet}} < 12$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.
Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $12 < p_{\textrm{T,jet}} < 15$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.
Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $15 < p_{\textrm{T,jet}} < 20$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.
A search is presented for hadronic signatures of beyond the Standard Model (BSM) physics, with an emphasis on signatures of a strongly-coupled hidden dark sector accessed via resonant production of a $Z'$ mediator. The ATLAS experiment dataset collected at the Large Hadron Collider from 2015 to 2018 is used, consisting of proton-proton collisions at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 140 fb$^{-1}$. The $Z'$ mediator is considered to decay to two dark quarks, which each hadronize and decay to showers containing both dark and Standard Model particles, producing a topology of interacting and non-interacting particles within a jet known as ``semi-visible". Machine learning methods are used to select these dark showers and reject the dominant background of mismeasured multijet events, including an anomaly detection approach to preserve broad sensitivity to a variety of BSM topologies. A resonance search is performed by fitting the transverse mass spectrum based on a functional form background estimation. No significant excess over the expected background is observed. Results are presented as limits on the production cross section of semi-visible jet signals, parameterized by the fraction of invisible particles in the decay and the $Z'$ mass, and by quantifying the significance of any generic Gaussian-shaped mass peak in the anomaly region.
Acceptance times efficiency weighted yields across the signal grid.
The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.2 signal points.
The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.4 signal points.
Inclusive and differential cross sections for Higgs boson production in proton-proton collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. Events with the diphoton final state are selected, and the measured inclusive fiducial cross section is $\sigma_\text{fid}$ = 74 $\pm$ 11 (stat) $^{+5}_{-4}$ (syst) fb, in agreement with the standard model prediction of 67.8 $\pm$ 3.8 fb. Differential cross sections are measured as functions of several observables: the Higgs boson transverse momentum and rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the standard model predictions.
Differential fiducial cross sections for pT of the Higgs boson
Example description
Differential fiducial cross sections for rapidity of the Higgs boson
Using $e^+e^-$ collision data collected with the BESIII detector operating at the Beijing Electron Positron Collider, the cross section of $e^+e^-\to \pi^+\pi^- h_c$ is measured at 59 points with center-of-mass energy $\sqrt{s}$ ranging from $4.009$ to $4.950~\mathrm{GeV}$ with a total integrated luminosity of $22.2~\mathrm{fb}^{-1}$. The cross section between $4.3$ and $4.45~\mathrm{GeV}$ exhibits a plateau-like shape and drops sharply around $4.5~\mathrm{GeV}$, which cannot be described by two resonances only. Three coherent Breit-Wigner functions are used to parameterize the $\sqrt{s}$-dependent cross section line shape. The masses and widths are determined to be $M_1=(4223.6_{-3.7-2.9}^{+3.6+2.6})~\mathrm{MeV}/c^2$, $\Gamma_1=(58.5_{-11.4-6.5}^{+10.8+6.7})~\mathrm{MeV}$, $M_2=(4327.4_{-18.8-9.3}^{+20.1+10.7})~\mathrm{MeV}/c^2$, $\Gamma_2=(244.1_{-27.1-18.0}^{+34.0+23.9})~\mathrm{MeV}$, and $M_3=(4467.4_{-5.4-2.7}^{+7.2+3.2})~\mathrm{MeV}/c^2$, $\Gamma_3=(62.8_{-14.4-6.6}^{+19.2+9.8})~\mathrm{MeV}$. The first uncertainties are statistical and the other two are systematic. The statistical significance of the three Breit-Wigner assumption over the two Breit-Wigner assumption is greater than $5\sigma$.
Dressed cross section at the 19 XYZ-I energy points with large statistics. The table also lists the integral luminosity, the number of signal events, the weighted efficiency, the radiative correction factor, and the dressed cross section. For the dressed cross section, the first error is statistical, the second error is the systematic, and the third error comes from the input branching ratios which is the dominant one in the multiplicative systematic uncertainties.
Dressed cross section at the 25 XYZ-II energy points with lower statistics. The table also lists the integral luminosity, the number of signal events, the weighted efficiency, the radiative correction factor, and the dressed cross section. For the dressed cross section, the first error is statistical, the second error is the systematic, and the third error comes from the input branching ratios which is the dominant one in the multiplicative systematic uncertainties.
Dressed cross section and its upper limit at the 15 R-scan energy points with small statistics. The table also lists the integral luminosity, the number of signal events, the weighted efficiency, the radiative correction factor, and the dressed cross section. For the dressed cross section, the first error is statistical, the second error is the systematic, and the third error comes from the input branching ratios which is the dominant one in the multiplicative systematic uncertainties.
Anisotropic flow and radial flow are two key probes of the expansion dynamics and properties of the quark-gluon plasma (QGP). While anisotropic flow has been extensively studied, radial flow, which governs the system's radial expansion, has received less attention. Notably, experimental evidence for the global and collective nature of radial flow has been lacking. This Letter presents the first measurement of transverse momentum ($p_{\mathrm{T}}$) dependence of radial flow fluctuations ($v_0(p_{\mathrm{T}})$) over $0.5<p_{\mathrm{T}}<10$ GeV, using a two-particle correlation method in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. The data reveal three key features supporting the collective nature of radial flow: long-range correlation in pseudorapidity, factorization in $p_{\mathrm{T}}$, and centrality-independent shape in $p_{\mathrm{T}}$. The comparison with a hydrodynamic model demonstrates the sensitivity of $v_0(p_{\mathrm{T}})$ to bulk viscosity, a crucial transport property of the QGP. These findings establish a new, powerful tool for probing collective dynamics and properties of the QGP.
Data from Figure 2, panel a, $v_{0}$
Data from Figure 2, panel c, upper panel, Normalized Covariance $\times 10^{3}$ in 0-5% Centrality
Data from Figure 2, panel c, lower panel, Normalized Covariance $\times 10^{3}$ in 50-60% Centrality
A search for pair-production of vector-like leptons is presented, considering their decays into a third-generation Standard Model (SM) quark and a vector leptoquark ($U_1$) as predicted by an ultraviolet-complete extension of the SM, referred to as the '4321' model. Given the assumed decay of $U_1$ into third-generation SM fermions, the final state can contain multiple $\tau$-leptons and $b$-quarks. This search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of up to 140 fb$^{-1}$. No significant excess above the SM background prediction is observed, and 95% confidence level limits on the cross-section times branching ratio are derived as a function of the vector-like lepton mass. A lower observed (expected) limit of 910 GeV (970 GeV) is set on the vector-like lepton mass. Additionally, the results are interpreted for a supersymmetric model with an $R$-parity violating coupling to the third-generation quarks and leptons. Lower observed (expected) limits are obtained on the higgsino mass at 880 GeV (940 GeV) and on the wino mass at 1170 GeV (1170 GeV).
Observed (solid line with markers) and expected (dashed line) 95% CL upper limits on the VLL pair production cross-section (σ<sub>VLL</sub>) times branching ratio (BR) to third generation quarks and leptons as a function of m<sub>VLL</sub>. The limits presented in black lines are obtained after combining all five signal regions. The inner green (outer yellow) band corresponds to the ±1 σ (±2 σ) uncertainty around the combined expected limit. The 95% CL expected upper limits in the three individual channels (1τ<sub>had</sub> ≥3b MST, 1τ<sub>had</sub> ≥3b BJET and ≥2τ<sub>had</sub> ≥3b MSDT) are shown for comparison. The solid red line represents the theory prediction of the VLL pair production cross-section at NLO in QCD.
Observed (solid line with markers) and expected (dashed line) 95% CL upper limits on the higgsino pair production cross-section (σ<sub>higgsino</sub>) times branching ratio (BR) to third generation quarks and leptons as a function of m<sub>higgsino</sub>. The limits presented in black lines are obtained after combining all five signal regions. The inner green (outer yellow) band corresponds to the ±1 σ (±2 σ) uncertainty around the combined expected limit. The 95% CL expected upper limits in the three individual channels (1τ<sub>had</sub> ≥3b MST, 1τ<sub>had</sub> ≥3b BJET and ≥2τ<sub>had</sub> ≥3b MSDT) are shown for comparison. The solid red line represents the theory prediction of the higgsino pair production cross-section at NLO in QCD.
Observed (solid line with markers) and expected (dashed line) 95% CL upper limits on the wino pair production cross-section (σ<sub>wino</sub>) times branching ratio (BR) to third generation quarks and leptons as a function of m<sub>wino</sub>. The limits presented in black lines are obtained after combining all five signal regions. The surrounding inner green (outer yellow) band corresponds to the ±1 σ (±2 σ) uncertainty around the combined expected limit. The 95% CL expected upper limits in the three individual channels (1τ<sub>had</sub> ≥3b MST, 1τ<sub>had</sub> ≥3b BJET and ≥2τ<sub>had</sub> ≥3b MSDT) are shown for comparison. The solid red line represents the theory prediction of the wino pair production cross-section at NLO in QCD.
A search for events with one displaced vertex from long-lived particles using data collected by the ATLAS detector at the Large Hadron Collider is presented, using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded in 2015-2018. The search employs techniques for reconstructing vertices of long-lived particles decaying into hadronic jets in the muon spectrometer displaced between 3 m and 14 m from the primary interaction vertex. The observed number of events is consistent with the expected background and limits for several benchmark signals are determined. A scalar-portal model and a Higgs-boson-portal baryogenesis model are considered. A dedicated analysis channel is employed to target Z-boson associated long-lived particle production, including an axion-like particle and a dark photon model. For the Higgs boson model, branching fractions above 1% are excluded at 95% confidence level for long-lived particle proper decay lengths ranging from 5 cm to 40 m. For the photo-phobic axion-like particle model considered, this search produces the strongest limits to date for proper decay lengths greater than $\mathcal{O}(10)$ cm.
Summary of the one-DV limits for the H/ϕ arrow ss model. Comparison between observed and expected 95% CL limits on (σ/σggH)×B for an SM-like Higgs boson portal mediator and ms=35 GeV. The observed limits are consistent with the expected ones within the uncertainties.
Observed 95% CL limits on (σ/σggH)×B for all Higgs boson portal mediator samples where the cross-section is normalized to the SM Higgs boson gluon–gluon fusion production cross-section, σggH = 48.61 pb [97]. The observed limits are consistent with the expected ones within the uncertainties.
Observed 95% CL limits on σ×B for mϕ≠ 125 GeV. The observed limits are consistent with the expected ones within the uncertainties.
The production cross-section of high-mass $\tau$-lepton pairs is measured as a function of the dilepton visible invariant mass, using 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider. The measurement agrees with the predictions of the Standard Model. A fit to the invariant mass distribution is performed as a function of $b$-jet multiplicity, to constrain the non-resonant production of new particles described by an effective field theory or in models containing leptoquarks or $Z'$ bosons that couple preferentially to third-generation fermions. The constraints on new particles improve on previous results, and the constraints on effective operators include those affecting the anomalous magnetic moment of the $\tau$-lepton.
The measured unfolded differential cross sections.
The combined covariance matrix for the differential cross-section distribution.
Statistical covariance matrix for the differential cross-section distribution.