We report measurements of spin correlations and analyzing powers in He→3(p→, 2p) and He→3(p→, pn) quasielastic scattering as a function of momentum transfer and missing momentum at 197 MeV using a polarized internal target at the Indiana University Cyclotron Facility Cooler Ring. At sufficiently high momentum transfer we find He→3(p→, pn) spin observables are in good agreement with free p−n scattering observables, and therefore that He→3 can serve as a good polarized neutron target. The extracted polarizations of nucleons in He→3 at low missing momentum are consistent with Faddeev calculations.
QUASIELASTIC SCATTERING.
The spin correlation coefficient combinations Axx + Ayy, Axx - Ayy and the analyzing powers Ay(theta) were measured for pp-->pnpi+ at beam energies of 325, 350, 375 and 400 MeV. A polarized internal atomic hydrogen target and a stored, polarized proton beam were used. These polarization observables are sensitive to contributions of higher partial waves. A comparison with recent theoretical calculations is provided.
No description provided.
A polarized internal atomic hydrogen target and a stored, polarized beam are used to measure the spin-dependent total cross section Delta_sigma_T/sigma_tot, as well as the polar integrals of the spin correlation coefficient combination A_xx-A_yy, and the analyzing power A_y for pp-> pp pi0 at four bombarding energies between 325 and 400 MeV. This experiment is made possible by the use of a cooled beam in a storage ring. The polarization observables are used to study the contribution from individual partial waves.
SIG(C=DEL_T) defined as the cross section with the spins of the colliding protons antiparallel, minus the cross section with spins parallel, using transversely polarized beam and target.
Measurements of the pp spin correlation coefficients Axx, Ayy, and Axz and analyzing power Ay for pp elastic scattering at 197.8 MeV over the angular range 4.5°–17.5° have been carried out. The statistical accuracy is approximately ±0.01 for Amn and ±0.004 for Ay, while the corresponding scale factor uncertainties are 2.4% and 1.3%, respectively. The experiment makes use of a polarized hydrogen gas target internal to a proton storage ring (IUCF Cooler) and a circulating beam of polarized protons. The target polarization (Q=0.79) is switched in sign and in direction (x,y,z) every 2 s by reversing a weak guide field (about 0.3 mT). The forward-scattered protons are detected in two sets of wire chambers and a scintillator, while recoil protons are detected in coincidence with the forward protons by silicon strip detectors placed 5 cm from the proton beam. The background rate from scattering by the walls of the target cell is (0.2±0.2)% of the good event rate. Analysis methods and comparisons with pp potential models and pp partial wave analyses are described.
No description provided.
The analyzing power Ay for p+p elastic scattering at θlab=8.64°±0.07° (θcms=18.1°) and at a bombarding energy of 183.1±0.4 MeV has been determined to be Ay=0.2122±0.0017. The error includes statistics, systematic uncertainties, and the uncertainty in bombarding energy and angle. This measurement represents a calibration standard for polarized beams in this energy range. The absolute scale for the measurement has been obtained by comparison with p+C elastic scattering at the same energy at an angle where Ay is very nearly unity.
Axis error includes +- 0.0/0.0 contribution (?////).
We report a measurement of the spin-dependent total cross section ratios delta_sigma_T/sigma_tot and delta_sigma_L/sigma_tot of the pp --> pp pi^0 reaction between 325 MeV and 400 MeV. The experiment was carried out with a polarized internal target in a storage ring. Non-vertical beam polarization was obtained by the use of solenoidal spin rotators. Near threshold, the knowledge of both spin-dependent total cross sections is sufficient to deduce the strength of certain participating partial waves, free of any model.
SIG(C=T1-1) and SIG(C=T11) means opposite and parallel transverse beam and target polarizations. The same is for longitudunal (L) polarizations. SIG(C=TOT)is unpolarized total cross section.
SIG(C=L1-1) and SIG(L=11) means opposite and parallel longitudinal beam andtarget polarizations. SIG(C=TOT) is unpolarized total cross section.
Analyzing powers were measured and used to quantify the observation that s -wave processes dominate near threshold. Values of A y ( θ π , φ π =0°) are presented for η values of 0.22, 0.42 and 0.50. Maximum analyzing powers A N 0 are equal to −0.13, −0.24, and −0.28, respectively. A partial wave analysis, made possible by the new analyzing powers and available cross sections, indicates that the s -wave contribution to the cross section constitutes about 91% of the total cross section at η =0.22, or 300 MeV. It decreases to about 75% for η =0.5.
Polarized beam.
The total cross section for pion production in the reaction pd→pdπ0 has been measured for bombarding energies from Tp=208.4 MeV to 294.6 MeV. This corresponds to maximum pion momenta η=pπ,c.m./mπc between 0.099 and 0.96. The experiment was performed using an electron-cooled proton beam and an internal deuterium gas jet target. The resulting σtot changes by almost four orders of magnitude over the covered energy range. The results are compared to a model which assumes quasi-free production via the pn→dπ0 elementary process.
Geometry 1.
Geometry 2.
No description provided.
The total cross section for the reaction pp→ppπ0 was measured at nine center-of-mass energies from 1.5 to 23 MeV above threshold. The experiment was carried out with the Indiana Cooler, a recently constructed storage ring. The experimental advantages of an electron-cooled proton beam were utilized. The data cover an energy range where only the lowest possible angular momentum state contributes in the exit channel. The measured energy dependence of the total cross section is not compatible with that predicted by models of s-wave pion production and rescattering.
No description provided.
Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\vec\gamma + p \to K^+ + \vec\Lambda$ and $\vec\gamma + p \to K^+ + \vec\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\cos\theta_{K^+}^{c.m.}< +0.95$. For the $\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\it total} $\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.032 GeV and W = 1.679 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.132 GeV and W = 1.734 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.232 GeV and W = 1.787 GeV.