We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from C12 nuclei. Our result is Aexpt=0.60±0.14±0.02 ppm, where the first error is statistical and the second is systematic. With a beam polarization of 0.37, we compute the isoscalar vector hadronic coupling constant γ̃ to be 0.136±0.032±0.009. The standard model predicts γ̃=0.155 at the tree level, in agreement with our data.
No description provided.
Relativistic iron, lanthanum, holmium, and gold projectile nuclei with several different energies have been fragmented in targets of polyethylene, carbon, aluminum, copper, and lead. Our detectors cleanly resolve the individual charges of the heaviest of these fragments and provide some limited information on the masses. We have measured 1256 elemental partial cross sections for the production of fragments from interactions in these target materials. Values have been derived for another 417 cross sections in a hydrogen medium. These cross sections depend on the energy and mass of the projectile nuclei as well as on the nature of the target. Total charge-changing cross sections were also found, but only in a composite target, and have been shown to be weakly dependent on energy. The mean mass losses observed for fragments that have lost a few protons show that typically many neutrons are lost with each proton, producing fragment nuclei that must be highly proton rich, and consequently very unstable. The cross sections for charge pickup on heavy targets show a rapid increase with decreasing energy, particularly for the heaviest targets. The systematics of the dependencies of the partial cross sections will be discussed in a companion paper.
TARGET NUCLEUS=CH2.
No description provided.
No description provided.
Measurements of the partial charge-changing cross sections for the fragmentation of relativistic iron, lanthanum, holmium, and gold nuclei of several different energies incident on targets of polyethylene, carbon, aluminum, and copper have been reported in an accompanying paper. This paper describes the systematics of the variations of these cross sections with energy, projectile, target, and fragment. We have been able to generate a seven-parameter global fit to 795 measured cross sections for the heavy targets which fits the data with a standard deviation of 7%. We have also generated a similar global fit to 303 measured cross sections for a hydrogen target which fits the data with a standard deviation of 10%. These representations imply that the hypothesis of limiting fragmentation is only accurate to some 20–30 %. Weak factorization can apply, but fits that are marginally better, and more physically plausible, can be obtained without factorization. We have identified, and discussed, a number of caveats to the applicability of these fits outside, and inside, the range of energies and masses covered. Excessively large cross sections for the loss of a single proton from the projectile nuclei suggest electromagnetic dissociation. The cross sections for fragments that experience large charge changes appear to become independent of the size of the charge change. Very heavy projectiles have a significant probability of experiencing fission.
No description provided.
No description provided.
No description provided.
First data are presented for the polarized-target asymmetry in the reaction π+p→π+pγ at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment μΔ of the Δ++(1232 MeV). A fit of the asymmetry in the cross section d5σ/dΩπ dΩγ dk as a function of the photon energy k to predictions from a recent isobar-model calculation with μΔ as the only free parameter yields μΔ=1.64(±0.19expΔ,±0.14 theor)μp. Though this value agrees with bag-model corrections to the SU(6) prediction μΔ=2μp, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.
No description provided.
No description provided.
The reaction e+e−→e+e−π0π0 has been analyzed using 97 pb−1 of data taken with the Crystal Ball detector at the DESY e−e+ storage ring DORIS II at beam energies around 5.3 GeV. For the first time we have measured the cross section for γγ→π0π0 for π0π0 mvariant masses ranging from threshold to about 2 GeV. We measure an approximately flat cross section of about 10 nb for W=mπ0π0<0.8 GeV, which is below 0.6 GeV, in good agreement with a theoretical prediction based on an unitarized Born-term model. At higher invariant masses we observe formation of the f2(1270) resonance and a hint of the f0(975). We deduce the following two-photon widths: Γγγ(f2(1270))=3.19±0.16±0.280.29 keV and Γγγ(f0(975))<0.53 keV at 90% C.L. The decay-angular distributions show the π0π0 system to be dominantly spin 0 for W<0.7 GeV and spin 2, helicity 2 in the f2(1270) region, with helicity 0 contributing at most 22% (90% C.L.).
Statistical errors only.
Statistical errors only.
The NA24 experiment at CERN investigated inclusive γγ, π0π0, and γπ0 final states in the mass range between 4 and 9 GeV/c2 produced in π−p, π+p, and pp reactions at a c.m.-system energy s=23.7 GeV. The π0π0 cross sections agree well with expectations of the quark-parton model. For γπ0 production in π−p and pp reactions, a clear signal is observed and cross sections are shown. The production of γγ events was observed with a statistical significance of 2.9σ in π−p reactions. The cross section is in agreement with a higher-order QCD prediction.
Cross sections are averaged over the transverse momentum differences up to a value which is 1.10 GeV for all points except the first two which are 0.5 and 0.75 GeV respectively.
No description provided.
Maximum accepted transverse momentum difference of pi0 pair is 1 GeV. Inclusive cross section integrated over the total geometrical acceptance of the detector.
The analyzing power of π−p→π0n has been measured for pπ=301−625 MeV/c with a transversely polarized target, mainly in the backward hemisphere. The final-state neutron and a γ from the π0 were detected in coincidence with two counter arrays. Our results are compared with predictions of recent πN partial-wave analyses by the groups of Karlsruhe-Helsinki, Carnegie-Mellon University-Lawrence Berkeley Laboratory (CMU-LBL), and Virginia Polytechnic Institute (VPI). At the lower incident energies little difference is seen among the three analyses, and there is excellent agreement with our data. At 547 MeV/c and above, our data strongly favor the VPI phases, and disagree with Karlsruhe-Helsinki and CMU-LBL analyses, which are the source of the πN resonance parameters given in the Particle Data Group table.
Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).
Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).
Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).
We have measured the analyzing power in π+, π−, and KS0 production by a polarized proton beam at 13.3 and 18.5 GeV/c. The data cover the central and the beam fragmentation region, in the transverse-momentum range up to 2 GeV/c. The results indicate that sizable effects are present at high xF and also persist into the hard-scattering region for KS0 and π+. A zero value of the analyzing power was observed for π− production.
No description provided.
No description provided.
No description provided.
A proton-proton bremsstrahlung experiment has been carried out at TRIUMF using a 280-MeV polarized proton beam impinging on a liquid-hydrogen target. All three outgoing particles were detected: the higher-energy proton in a magnetic spectrometer, the lower-energy proton with plastic scintillators, and the photon in lead-glass Cherenkov detectors. The experiment shows the first unambiguous evidence for off-shell effects in the free nucleon-nucleon interaction, in that the analyzing powers disagree strongly with the predictions of the soft-photon approximation (which incorporates only on-shell information) but are consistent with the results of calculations using the Bonn and Paris potentials.
Estimated scale uncertainty is 1.5 pct.
Estimated scale uncertainty is 1.5 pct.
Estimated scale uncertainty is 1.5 pct.
We have observed four unambiguous decays of the charmed strange baryon Ξ c o in the NA32 experiment at CERN. Charge- coupled devices and silicon microstrip detectors were used to reconstruct the decay mode Ξ c o → pK − K ∗ (892) o seen in events produced by the interaction of 230 GeV/ c negative poins and kaons on a copper target. We present the first measurement of the lifetime of the Ξ c o , together with a determination of its mass and production cross section. The resonant components of the Ξ c o decay are studied. We use our earlier measurement of the mass of the Ξ c + in the determination of the isospin mass splitting of the Ξ c states.
No description provided.