The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1<Q^2<600 GeV^2 and 0.02<y<0.7 is 8.31 +- 0.31(stat.) +0.30-0.50(syst.) nb in the kinematic region 1.5< pT(D*+-)<15 GeV and |eta(D*+-)|<1.5. Differential cross sections are consistent with a next-to-leading-order perturbative-QCD calculation when using charm-fragmentation models which take into account the interaction of the charm quark with the proton remnant. The observed cross section is extrapolated to the full kinematic region in pT(D*+-) and eta(D*+-) in order to determine the charm contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the range 10^-4 to 10-3.
The measured cross section for D* production. The first is derived from theK2PI final state and the second from the K4PI final state.
The differential cross section w.r.t. Q**2 from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.
The differential cross section w.r.t. X from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.
Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.
Integrated D*+- cross sections from the decay channel (1) AND (2).
Differential cross section, as a function of transverse momentum, from decay channel (1).
Differential cross section, as a function of pseudo-rapidity, from channel (1).
This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel $D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ $ (+ c.c.) has been used in the study. The $e^+p$ cross section for inclusive D^{*\pm} production with $5<Q^2<100 GeV^2$ and $y<0.7$ is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {$1.3<p_T(D^{*\pm})<9.0$ GeV and $| \eta(D^{*\pm}) |<1.5$}. Differential cross sections as functions of p_T(D^{*\pm}), $\eta(D^{*\pm}), W$ and $Q^2$ are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and $\eta$(D^{*\pm}), the charm contribution $F_2^{c\bar{c}}(x,Q^2)$ to the proton structure function is determined for Bjorken $x$ between 2 $\cdot$ 10$^{-4}$ and 5 $\cdot$ 10$^{-3}$.
No description provided.
Integrated charm cross sections in two Q**2 regions.
Distribution of the fractional momentum of the D* in the gamma*-p system.
Inclusive photoproduction of $\dspm$ in ep collisions at HERA has been measured with the ZEUS detector for photon-proton centre of mass energies in the range \linebreak \wrang and photon virtuality Q~2 < 4 \g2. The cross section $\sigma_{ep \to \ds X} $ integrated over the kinematic region \ptrangand \etarang is {\xsecs}. Differential cross sections as functions of $p_{\perp}~{\ds}$, $\eta~{\ds}$ and W are given. The data are compared with two next-to-leading order perturbative QCD predictions. For a calculation using a massive charm scheme the predicted cross sections are smaller than the measured ones. A recent calculation using a massless charm scheme is in agreement with the data.
Data from the (Kpi)pi channel.
Data from the (Kpipipi)pi channel.
Data from the (Kpi)pi channel.
We have measured the cross section of γ+D*± production in p¯p collisions at s=1.8TeV using the Collider Detector at Fermilab. In this kinematic region, the Compton scattering process (gc→γc) is expected to dominate and thus provide a direct link to the charm quark density in the proton. From the 45±18 γ+D*± candidates in a 16.4pb−1 data sample, we have determined the production cross section to be 0.38±0.15(stat)±0.11(syst) nb for the rapidity range |y(D*±)|<1.2 and |y(γ)|<0.9, and for the transverse momentum range pT(D*±)>6GeV/c and 16<pT(γ)<40GeV/c. The measured cross section is compared to a theoretical prediction.
No description provided.
None
No description provided.
No description provided.
We present a direct measurement of Ac=2vcac(vc2+ac2) from the left-right forward-backward asymmetry of D*+ and D+ mesons in Z0 events produced with the longitudinally polarized SLAC Linear Collider beam. These Z0→cc¯ events are tagged on the basis of event kinematics and decay topology from a sample of hadronic Z0 decays recorded by the SLAC Large Detector. We measure Ac0=0.73±0.22(stat)±0.10(syst).
No description provided.
We report the first observation of charmed mesons with the ZEUS detector at HERA using the decay channel ${\rm D}~{*+}\rightarrow (\Do \rightarrow {\rm K}~-\pi~+)\pi~+$ (+ c.c.). Clear signals in the mass difference $\Delta M$=$M$(D$~*$)--$M$(D$~0)$ as well as in the $M(K\pi)$ distribution at the D$~0$ mass are found. The $ep$ cross section for inclusive \DSpm\ production with $Q~2<4\GeV~2$ in the $\gamma p$ centre-of-mass energy range $115 < W < 275$ \GeV\ has been determined to be $(32 \pm 7~{+4}_{-7} )$ nb in the kinematic region \mbox{\{$p_T(\DS)\geq $ 1.7 \,\GeV, $|\eta(\DS)| < 1.5 $\}}. Ex\-tra\-po\-la\-ting outside this region, assuming a mass of the charm quark of 1.5 \GeV, we estimate the $ep$ charm cross section to be $\sigma(e p \rightarrow c \bar{c}X ) = (0.45 \pm 0.11~{+0.37}_{-0.22}) \, \mu {\rm b} $ at \mbox{$\sqrt{s} = 296$}\GeV\ and $\langle W \rangle = 198$ \GeV. The average $\gamma p$ charm cross section \mbox{$\sigma(\gamma p \rightarrow c \bar{c}X )$} is found to be \mbox{$(6.3 \pm 2.2~{+6.3}_{-3.0}) \, \mu {\rm b} $} at $\langle W \rangle = 163$ \GeV\ and \mbox{$(16.9 \pm 5.2~{+13.9}_{-8.5}) \, \mu {\rm b} $} at $\langle W \rangle = 243$ \GeV. The increase of the total charm photoproduction cross section by one order of magnitude with respect to low energy data experiments is well described by QCD NLO calculations using singular gluon distributions in the proton.
No description provided.
Assumes probability of charmed quark pair fragmenting to D* is (55.2 +- 4.2) pct and mass of CQ is 1.5 GeV.
Assumes probability of charmed quark pair fragmenting to D* is (55.2 +- 4.2) pct and mass of CQ is 1.5 GeV.
Using a silicon-microstrip detector array to identify secondary vertices occurring downstream of a short platinum target, we have searched for the decay D0→μ+μ−. Normalized relative to the J/ψ→μ+μ− signal observed in the same data sample, for a 3.25-mm minimum decay distance our branching-ratio sensitivity is (4.8±1.4)×10−6 per event, and after background subtraction we observe -4.1±4.8 events. Using the statistical approach advocated by the Particle Data Group, we obtain a limit B(D0→μ+μ−)<3.1×10−5 at 90% confidence, confirming with a different technique the limit previously obtained by Louis et al. The interpretation of the upper limit involves complex statistical issues; we present another approach which is more suitable for combining the results of different experiments.
Measured branching ratio.
Classical 90 PCT upper limit of branching ratio.
The nuclear dependence for 800 GeV/c proton production of neutron D mesons has been measured near xF=0 in Experiment 789 at Fermilab. D mesons from beryllium and gold targets were detected with a pair spectrometer and a silicon vertex detector via their decay D→Kπ. No nuclear dependence is found, with a measured α=1.02±0.03±0.02. The measured differential cross section, dσ/dxF, for neutral-D-meson production at 〈xF〉=0.031 is 58±3±7 μb/nucleon. The integrated cross section obtained by extrapolation of the measured cross section to all xF is 17.7±0.9±3.4 μb/nucleon and is consistent with previous measurements.
.
.
.