Date

First Measurement of the Muon Neutrino Charged Current Single Pion Production Cross Section on Water with the T2K Near Detector

The T2K collaboration Abe, Ko ; Andreopoulos, Costas ; Antonova, Maria ; et al.
Phys.Rev.D 95 (2017) 012010, 2017.
Inspire Record 1465650 DOI 10.17182/hepdata.73182

The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ${\sim}0.8$ GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by $p_{\pi^+}>200$MeV/c, $p_{\mu^-}>200$MeV/c, $\cos \theta_{\pi^+}>0.3$ and $\cos \theta_{\mu^-}>0.3$. The total flux integrated $\nu_\mu$ charged current single positive pion production cross section on water in the restricted phase-space is measured to be $\langle\sigma\rangle_\phi=4.25\pm0.48 (\mathrm{stat})\pm1.56 (\mathrm{syst})\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$. The total cross section is consistent with the NEUT prediction ($5.03\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$) and 2$\sigma$ lower than the GENIE prediction ($7.68\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but over-estimates the overall cross section normalization.

8 data tables

Total $\nu_\mu$ CC1$\pi^+$ cross section on water in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$. The T2K data point is placed at the $\nu_\mu$ flux mean energy.

Unfolded $\nu_\mu$ CC1$\pi^+$ differential cross section as a function of $p_\pi$ in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$.

Unfolded $\nu_\mu$ CC1$\pi^+$ differential cross section as a function of $\cos\theta_\pi$ in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$.

More…

Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam

The T2K collaboration Abe, Ko ; Andreopoulos, Costas ; Antonova, Maria ; et al.
Phys.Rev.Lett. 116 (2016) 181801, 2016.
Inspire Record 1408741 DOI 10.17182/hepdata.73984

T2K reports its first measurements of the parameters governing the disappearance of $\bar{\nu}_\mu$ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic $\bar{\nu}_\mu$ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the $\bar{\nu}_\mu$ survival probability is expected to be minimal. Using a dataset corresponding to $4.01 \times 10^{20}$ protons on target, $34$ fully contained $\mu$-like events were observed. The best-fit oscillation parameters are $\sin^2 (\bar{\theta}_{23}) = 0.45$ and $|\Delta\bar{m}^2_{32}| = 2.51 \times 10^{-3}$ eV$^2$ with 68% confidence intervals of 0.38 - 0.64 and 2.26 - 2.80 $\times 10^{-3}$ eV$^2$ respectively. These results are in agreement with existing antineutrino parameter measurements and also with the $\nu_\mu$ disappearance parameters measured by T2K.

6 data tables

1$\sigma$ C.L. contour in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).

90% C.L. contour in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).

Best-fit point in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).

More…

Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer

The MINERvA collaboration Rodrigues, P.A. ; Demgen, J. ; Miltenberger, E. ; et al.
Phys.Rev.Lett. 116 (2016) 071802, 2016.
Inspire Record 1405301 DOI 10.17182/hepdata.76976

Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current $\nu_\mu$ interactions is combined with muon kinematics to permit separation of the quasielastic and $\Delta$(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and $\Delta$ resonance processes are needed to describe the data. The data in this kinematic region also has an enhanced population of multi-proton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.

2 data tables

The $\nu_\mu$ flux, in units 10$^{-5}$ / m$^{2}$ / P.O.T. / GeV.

Measured cross section per nucleon, in units 10$^{-42}$ cm$^2$ / GeV$^2$.


Single neutral pion production by charged-current $\bar{\nu}_\mu$ interactions on hydrocarbon at $\langle E_\nu \rangle = $ 3.6 GeV

The MINERvA collaboration Le, T. ; Palomino, J.L. ; Aliaga, L. ; et al.
Phys.Lett.B 749 (2015) 130-136, 2015.
Inspire Record 1351216 DOI 10.17182/hepdata.73317

Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the \minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for $\bar{\nu}_e$ appearance oscillation experiments. The differential cross sections for $\pi^0$ momentum and production angle, for events with a single observed $\pi^0$ and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the $\pi^0$ kinematics for this process.

2 data tables

Flux-averaged differential cross section in $\pi^0$ momentum, $d\sigma/dp_{\pi^0}(10^{-40}\text{cm}^2/\text{nucleon}/(\text{GeV/c})$, for 1$\pi^0$ production with statistical (stat) and systematic (sys) uncertainties.

Flux-averaged differential cross section in $\pi^0$ angle, $d\sigma/d\theta_{\pi^0}(10^{-42}\text{cm}^2/\text{nucleon}/\text{deg.})$, for 1$\pi^0$ production with statistical (stat) and systematic (sys) uncertainties.


Separated structure functions for the exclusive electroproduction of K+ Lambda and K+ Sigma0 final states.

The CLAS collaboration Ambrozewicz, P. ; Carman, D.S. ; Feuerbach, R.J. ; et al.
Phys.Rev.C 75 (2007) 045203, 2007.
Inspire Record 732363 DOI 10.17182/hepdata.4994

We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.

531 data tables

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.

More…

Measurement of the $x$- and $Q^2$-Dependence of the Asymmetry $A_1$ on the Nucleon

The CLAS collaboration Dharmawardane, K.V. ; Kuhn, S.E. ; Bosted, Peter E. ; et al.
Phys.Lett.B 641 (2006) 11-17, 2006.
Inspire Record 717523 DOI 10.17182/hepdata.6726

We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.

306 data tables

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1300 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1500 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1700 GeV.

More…

Measurement of the deuteron structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Phys.Rev.C 73 (2006) 045205, 2006.
Inspire Record 684005 DOI 10.17182/hepdata.12254

Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the duality phenomenon in the F2 structure function.

113 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the proton spin structure function g1(x,Q**2) for Q**2 from 0.15-GeV**2 to 1.6-GeV**2 with CLAS.

The CLAS collaboration Fatemi, R. ; Skabelin, A.V. ; Burkert, V.D. ; et al.
Phys.Rev.Lett. 91 (2003) 222002, 2003.
Inspire Record 621221 DOI 10.17182/hepdata.41917

Double-polarization asymmetries for inclusive $ep$ scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH$_3$ target in the CLAS detector. The polarized structure function $g_1(x,Q^2)$ was extracted throughout the nucleon resonance region and into the deep inelastic regime, for $Q^2 = 0.15 -1.64 $GeV$^2$. The contributions to the first moment $\Gamma_1(Q^2) = \int g_1(x,Q^2)dx$ were determined up to $Q^2=1.2$ GeV$^2$. Using a parametrization for $g_1$ in the unmeasured low $x$ regions, the complete first moment was estimated over this $Q^2$ region. A rapid change in $\Gamma_1$ is observed for $Q^2 < 1 $GeV$^2$, with a sign change near $Q^2 = 0.3 $GeV$^2$, indicating dominant contributions from the resonance region. At $Q^2=1.2$ GeV$^2$ our data are below the pQCD evolved scaling value.

8 data tables

The measured photon asymmetry (A1+ETA*A2) for the Q**2 region 0.15 to 0.22 GeV**2 obtained with a beam energy of 2.6 GeV.

The measured photon asymmetry (A1+ETA*A2) for the Q**2 region 0.6 to 1.10 GeV**2 obtained with a beam energy of 4.3 GeV.

The polarized structure function G1 as a function of Bjorken X for the Q**2range 0.15 to 0.27 GeV.

More…

A kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Taiuti, M. ; et al.
Phys.Rev.D 67 (2003) 092001, 2003.
Inspire Record 612145 DOI 10.17182/hepdata.12253

We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.

17 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of inclusive spin structure functions of the deuteron with CLAS.

The CLAS collaboration Yun, J. ; Kuhn, S.E. ; Dodge, G.E. ; et al.
Phys.Rev.C 67 (2003) 055204, 2003.
Inspire Record 604799 DOI 10.17182/hepdata.41972

We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer ($Q^2$ = 0.27 -- 1.3 (GeV/c)$^2$) and final hadronic state mass in the nucleon resonance region ($W$ = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target ($^{15}$ND$_3$) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry $A_{||}$ and the spin structure function $g_1^d$. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function $g_1^d$ and study its approach to both the deep inelastic limit at large $Q^2$ and to the Gerasimov-Drell-Hearn sum rule at the real photon limit ($Q^2 \to 0$). We find that the first moment varies rapidly in the $Q^2$ range of our experiment and crosses zero at $Q^2$ between 0.5 and 0.8 (GeV/c)$^2$, indicating the importance of the $\Delta$ resonance at these momentum transfers.

7 data tables

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.27to 0.39 GeV**2.

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.39to 0.65 GeV**2.

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.65to 1.3 GeV**2.

More…