Measurements of elastic photoproduction cross sections for the J / ψ meson from 100 GeV to 375 GeV are presented. The results indicate that the cross section increases slowly in this range. The shape of the energy dependence agrees well with the photon-gluon fusion model prediction.
Data supplied by V. Paolone.
Cross section data using Bethe-Heitler event normalization.
Cross section data using the Beam Gamma Monitor normalization.
We report on the production characteristics and total cross section for 9 beauty hadron pairs produced by a 600 GeV/ c π − beam, the first such information in this energy region. The events were detected in the hybrid emulsion spectrometer of Fermilab Experiment E653. The measured pair cross section for all χ F , assuming linear A dependence, is 33±11 (stat.)±6(syst.) nb/nucleon. Fits of the inclusive single-hadron production distribution to the forms d σ d χ F ∝ (1−|χ F −χ 0 |) n and d σ d p T 2 ∝ exp (−bp t 2 ) give n=5.0 −2.1−1.7 +2.7+1.7 , χ 0 =0.06 −0.07−0.03 +0.06+0.02 , and b=0.13 −0.04−0.02 +0.05+0.02 ( GeV /c −2 . .The pairs tend to be produced back-to-back.
Cross section over all x assuming A**1 nuclear dependence.
Fit to data of form dsig/dx ^ (1-ABS(X-X0))**N yields X0 = 0.06 +0.06,-0.07(DSYS=+0.02,-0.03) and N = 5.0 +2.7,-2.1(DSYS=+-1.7).
Fit to data of form dsig/dPT**2 ^ exp(-B*PT**2) yields B = 0.13 +0.05,-0.04(DSYS=+-0.02).
A search for charm production in the coherent diffractive dissociation reaction pSi→XSi was carried out for the modes D 0 → K − π + , D 0 → K − π + π + π − , and D + → K − π + π + . No charm signals were observed, and the 90% confidence level upper limit for coherent charm pair production was determined to be 26 μ b per silicon nucleus. The results are interpreted as an upper limit of 0.2% on the amount of intrinsic charm in the proton.
90 pct CL upper limits.
We present total and differential cross sections for charm mesons produced in 600 GeV/ c π - emulsion interactions. Fits to d 2 σ / dx F dp T 2 ∞ (1−| x F |) n exp (- bp T 2 ) for 676 electronically reconstructed D mesons with x F >0 give n =4.25±0.24 ( stat .)±0.23 ( syst .) and b =0.76±0.03±0.03 ( GeV / c ) -2 . The total inclusive D + and D 0 cross sections are σ ( π - N → D ± ; x F >0) = 8.66±0.46±1.96 μb nucleon and σ(π - N→D 0 D 0 ; x F >0)=22.05±1.37±4.82μb nucleonk, where a linear dependence on the mean atomic weight of the target is assumed. These results are compared to next-to-leading order QCD predictions.
Linear A-dependence. Different modes of the charm mesons detection were used (see text for detail). The differential cross section is fitted by the equation : D2(SIG)/D(XL)/D(PT**2) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).
Linear A-dependence.
Results for the Cabibbo suppressed semileptonic decays D 0 → π − e + ν and D 0 → π − μ + ν (charge conjugates are implied) are reported by Fermilab photoproduction experiment E687. We find 45.4 ± 13.3 events in the electron mode and 45.6 ± 11.8 in the muon mode. The relative branching ratio BR (D 0 →π − l + v) BR (D 0 →K − l + v) for the combined sample is measured to be 0.101 ± 0.020 (stat.) ± 0.003 (syst.) 14 .
CONST(C=V-CD and CONST(C=V-CS) are the Cabibbo-Kobayashi-Maskawa matrix elemets.
We report measurements of charm particle production asymmetries from the Fermilab photoproduction experiment E687. An asymmetry in the rate of production of charm versus anticharm particles is expected to arise primarily from fragmentation effects. We observe statistically significant asymmetries in the photoproduction of D + , D ∗+ and D 0 mesons and find small (but statistically weak) asymmetries in the production of the D s + meson and the Λ c + baryon. Our inclusive photoproduction asymmetries are compared to predictions from nonperturbative models of charm quark fragmentation.
Production asymmetry. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table. SIG(C=ANTI-CHARM) denotes the reaction with anti-charm production.
Antiparticle/particle production ratio. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table. SIG(C=ANTI-CHARM) denotes the reaction with anti-charm production.
Production asymmetry for particles produced in association with a D*(2010)+-. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table.
We report on the study of charm baryons decaying to Λ c + : Λ c ★+ (2625) → Λ c + π + π − , Λ c ★+ (2593) → Λ c + π + π − , Σ c 0 → Λ c + π − and Σ c ++ → Λ c + π + . We present a confirmation of the state Λ c ∗+ (2593) and determine its mass difference to be M ( Λ c ★+ (2593)) − M ( Λ c + ) = 309.2 ± 0.7 ± 0.3 MeV/ c 2 . We determine the lower limit on the resonant branching ratio to be BR (Λ c ★+ (2593) → Σ c π ± Λ c ★+ (2593) → Λ c + π + π − ) > 0.51 (90% c.l.). We also measure the mass differences M ( Σ c 0 ) − M ( Λ c + ) = 166.6±0.5±0.6 MeV/ c 2 and M ( Σ c ++ ) − M ( Λ c + ) = 167.6±0.6±0.6 MeV/ c 2 . Finally, we measure the relative photoproduction cross sections for Λ c ★+ and Σ c with respect to the (inclusive) photoproduction cross section for Λ c + .
No description provided.
The fermilab high-energy photoproduction experiment E687 provides a sample of approximately 90 events of the decay mode D + s → φμ + ν . The ratios of the form factors governing the decay are measured to be R v =1.8±0.9±0.2 and R 2 = 1.1±0.8±0.1, implying a polarization of Г 1 /Г t = 1.0±0.5±0.1 for the electron decay, consistent with our measurement of the form factor for the decay D + → K ∗0 μ + ν .
With a vetor meson in the final state, there are four formfactors, V(Q2), A1(Q2), A2(Q2), A3(Q2). Charge conjugated states are understood.
A high statistics sample of photoproduced charm particles from the FOCUS (E831) experiment at Fermilab has been used to search for CP violation in the Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/- 0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) = +0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second error is systematic. These asymmetries are consistent with zero with smaller errors than previous measurements.
All N-values corrected by efficiencies obtained from Monte-Carlo simulations. The CP asymmetry can be written as: ACP=(eta(D)-eta(DBAR))/(eta(D)+eta(DBAR)), where eta(Q=D+ KK)=(N(Q=D+ KK)/N(Q=D+ K) - N(Q=D- KK)/N(Q=D- K))/(N(Q=D+ KK)/N(Q=D+ K) + N(Q=D- KK)/N(Q=D- K)).
All N-values corrected by efficiencies obtained from Monte-Carlo simulations. The CP asymmetry can be written as: ACP=(eta(D)-eta(DBAR))/(eta(D)+eta(DBAR)), where eta(Q=D0 KK)=(N(Q=D0 KK)/N(Q=D0 K) - N(Q=DBAR0 KK)/N(Q=DBAR0 K))/(N(Q=D0 KK)/N(Q=D0 K) + N(Q=DBAR0 KK)/N(Q=DBAR0 K)).
All N-values corrected by efficiencies obtained from Monte-Carlo simulations. The CP asymmetry can be written as: ACP=(eta(D)-eta(DBAR))/(eta(D)+eta(DBAR)), where eta(Q=D0 PIPI)=(N(Q=D0 PIPI) - N(Q=DBAR0 PIPI))/(N(Q=D0 PIPI) + N(Q=DBAR0 PIPI)).
We present results on charm pair correlations measured in proton-emulsion interactions at s =38.7 GeV. The predictions of leading order QCD for the distributions in invariant mass, rapidity gap, x F , and polar angle in the charm pair CMS are qualitatively consistent with our measurements. The mean p T of the pairs is equal within errors to that measured in dilepton production at the same energy and mass range.
No description provided.