Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, we observe a new neutral state $Z_c(3900)^{0}$ with a significance of $10.4\sigma$. The mass and width are measured to be $3894.8\pm2.3\pm3.2$ MeV/$c^2$ and $29.6\pm8.2\pm8.2$~MeV, respectively, where the first error is statistical and the second systematic. The Born cross section for $e^+e^-\to\pi^0\pi^0 J/\psi$ and the fraction of it attributable to $\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi$ in the range $E_{cm}=4.19-4.42$ GeV are also determined. We interpret this state as the neutral partner of the four-quark candidate $Z_c(3900)^\pm$.
Efficiencies, yields, $R=\frac{\sigma(e^+e^-\to\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi)}{\sigma(e^+e^-\to\pi^0\pi^0 J/\psi)}$, and $\pi^0\pi^0 J/\psi$ Born cross sections at each energy point. For $N(Z_c^0)$ and $N(\pi^0\pi^0 J/\psi)$ errors and upper limits are statistical only. For $R$ and $\sigma_{\rm Born}$, the first errors and statistical and second errors are systematic. The statistical uncertainties on the efficiencies are negligible. Upper limits of $R$ (90$\%$ confidence level) include systematic errors.
We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5
Invariant cross section for $\pi^+$ and $\pi^-$ hadrons, as well as the statistical and systematic uncertainties. In addition, there is an absolute scale uncertainty of 9.6$\%$.
Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.
Ratio of charged pion cross section, as shown in Fig.6.
The production of mesons containing strange quarks (K$^0_s$, $\phi$) and both singly and doubly strange baryons ($\Lambda$, Anti-$\Lambda$, and $\Xi$+Anti-$\Xi$) are measured at central rapidity in pp collisions at $\sqrt{s}$ = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report yields (
The measured production spectra for K0s hadrons as a function of pT.
The measured production spectra for Lambda hadrons as a function of pT.
The measured production spectra for Anti-Lambda hadrons as a function of pT.
We have measured the ratio of prompt production rates of the charmonium states χc1 and χc2 in 110pb−1 of pp¯ collisions at s=1.8TeV. The photon from their decay into J/ψγ is reconstructed through conversion into e+e− pairs. The energy resolution this technique provides makes the resolution of the two states possible. We find the ratio of production cross sections σχc2σχc1=0.96±0.27(stat)±0.11(syst) for events with pT(J/ψ)>4.0GeV/c, |η(J/ψ)|<0.6, and pT(γ)>1.0GeV/c.
No description provided.
We report on a study of the ratio of inclusive three-jet to inclusive two-jet production cross sections as a function of total transverse energy in p-pbar collisions at a center-of-mass energy sqrt{s} = 1.8 TeV, using data collected with the D0 detector during the 1992-1993 run of the Fermilab Tevatron Collider. The measurements are used to deduce preferred renormalization scales in perturbative O(alpha_s^3) QCD calculations in modeling soft-jet emission.
First and second errors correspond to uncorrelated (C=UNCORR) and correlated (C=CORR) uncertainties. Uncorrelated uncertainties include statistical and uncorrelated systematic uncertainties added in quadrature.
We have reconstructed the radiative decays $\chi_{b}(1P) \to \Upsilon(1S) \gamma $ and $\chi_{b}(2P) \to \Upsilon(1S) \gamma $ in $p \bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, and measured the fraction of $\Upsilon(1S)$ mesons that originate from these decays. For $\Upsilon(1S)$ mesons with $p^{\Upsilon}_{T}>8.0$ GeV/$c$, the fractions that come from $\chi_{b}(1P)$ and $\chi_{b}(2P)$ decays are $(27.1\pm6.9(stat)\pm4.4(sys))%$ and $(10.5\pm4.4(stat)\pm1.4(sys))%$, respectively. We have derived the fraction of directly produced $\Upsilon(1S)$ mesons to be $(50.9\pm8.2(stat)\pm9.0(sys))%$.
No description provided.
DO has measured the inclusive production cross section of W and Z bosons in a sample of 13 pb$^{-1}$ of data collected at the Fermilab Tevatron. The cross sections, multiplied by their leptonic branching fractions, for production in pbar-p collisions at sqrt{s}=1.8 TeV are sigma_W*B(W->e nu) = 2.36+-0.02+-0.08+-0.13 nb, sigma_W*B(W->mu nu) = 2.09+-0.06+-0.22+-0.11 nb, sigma_Z*B(Z->e+ e-) = 0.218+-0.008+-0.008+-0.012 nb, and sigma_Z*B(Z->mu+ mu-) = 0.178+-0.022+-0.021+-0.009 nb, where the first uncertainty is statistical and the second systematic; the third reflects the uncertainty in the integrated luminosity. For the combined electron and muon analyses, we find sigma_W*B(W->l mu)/sigma_Z*B(Z->l+ l-) = 10.90+-0.52. Assuming standard model couplings, we use this result to determine the width of the W boson, and obtain Gamma(W) = 2.044+-0.097 GeV.
No description provided.
Combined electron and muon analysis.
We report on a measurement of the branching fraction of the Cabibbo-suppressed decay Bu+→J/ψπ+, where J/ψ→μ+μ−. The data were collected by the Collider Detector at Fermilab during 1992–1995 and correspond to an integrated luminosity of 110pb−1 in p¯p collisions at s=1.8TeV. A signal of 28−9+10 events is observed and we determine the ratio of branching fractions B(Bu+→J/ψπ+)/B(Bu+→J/ψK+) to be [5.0−1.7+1.9(stat)±0.1(syst)]%. Using the world average value for B(Bu+→J/ψK+), we calculate the branching fraction B(Bu+→J/ψπ+) to be (5.0−1.9+2.1)×10−5. We also search for the decay Bc+→J/ψπ+ and report a 95% confidence level limit on σ(Bc+)B(Bc+→J/ψπ+)/σ(Bu+)B(Bu+→J/ψK+) as a function of the Bc+ lifetime.
The ratio of the cross sections times the branching fraction.
We report measurements of charm particle production asymmetries from the Fermilab photoproduction experiment E687. An asymmetry in the rate of production of charm versus anticharm particles is expected to arise primarily from fragmentation effects. We observe statistically significant asymmetries in the photoproduction of D + , D ∗+ and D 0 mesons and find small (but statistically weak) asymmetries in the production of the D s + meson and the Λ c + baryon. Our inclusive photoproduction asymmetries are compared to predictions from nonperturbative models of charm quark fragmentation.
Production asymmetry. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table. SIG(C=ANTI-CHARM) denotes the reaction with anti-charm production.
Antiparticle/particle production ratio. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table. SIG(C=ANTI-CHARM) denotes the reaction with anti-charm production.
Production asymmetry for particles produced in association with a D*(2010)+-. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table.
A study of the particle multiplicity between jets with large rapidity separation has been performed using the D\O\ detector at the Fermilab Tevatron $p\bar{p}$ Collider operating at $\sqrt{s}=1.8$\,TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is $1.07 \pm 0.10({\rm stat})~{ + 0.25}_{- 0.13}({\rm syst})\%$, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of $0.80\%$ (95\% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.
'Opposite-side' jets with a large pseudorapidity separation. A cone algorithm with radius R = sqrt(d(etarap)**2+d(phi)**2)=0.7 is used for jet funding. Double negative binomial distribution (NBD) is used to parametrize the color-exchange component of the opposite-side multiplicity distribution betweeb jets. A result of extrapolation to the zero multiplicity point. Quoted systematic error is a result of combining in quadrature of the systematic errors described above.