We report on a search for second generation leptoquarks (Phi_2) using a data sample corresponding to an integrated luminosity of 110 pb^{-1} collected at the Collider Detector at Fermilab. We present upper limits on the production cross section as a function of Phi_2 mass, assuming that the leptoquarks are produced in pairs and decay into a muon and a quark with branching ratio beta. Using a Next-to-Leading order QCD calculation, we extract a lower mass limit of M_{\Phi_2} > 202 (160) GeV$/c^{2} at 95% confidence level for scalar leptoquarks with beta=1(0.5).
Cross section times branching ratios.
The ratio of the W+≥1 jet cross section to the inclusive W cross section is measured using W±→e±ν events from p¯p collisions at s=1.8TeV. The data are from 108pb−1 of integrated luminosity collected with the Collider Detector at Fermilab. Measurements of the cross section ratio for jet transverse energy thresholds (ETmin) ranging from 15 to 95 GeV are compared to theoretical predictions using next-to-leading-order QCD calculations. Data and theory agree well for ETmin>25GeV, where the predictions lie within 1 standard deviation of the measured values.
No description provided.
We present an analysis of dilepton events originating from top-antitop production in proton-antiproton collisions at sqrt{s}=1.8 TeV at the Fermilab Tevatron Collider. The sample corresponds to an integrated luminosity of 109+-7 pb^{-1}. We observe 9 candidate events, with an estimated background of 2.4+-0.5 events. We determine the mass of the top quark to be M_top = 161+-17(stat.)+-10(syst.) GeV/c^2. In addition we measure a top-antitop production cross section of 8.2+4.4-3.4 pb (where M_top = 175 GeV/c^2 has been assumed for the acceptance estimate).
No description provided.
We present the results of a search for third generation leptoquark (LQ) pairs in 110±8pb−1of p¯p collisions at s=1.8TeV recorded by the Collider Detector at Fermilab. We assume third generation leptoquarks decay to a τ lepton and a b quark with branching ratio β. We observe one candidate event, consistent with standard model background expectations. We place upper limits on σ(p¯p→LQLQ¯)̇β2 as a function of the leptoquark mass MLQ. We exclude at 95% confidence level scalar leptoquarks with MLQ<99GeV/c2, gauge vector leptoquarks with MLQ<225GeV/c2, and nongauge vector leptoquarks with MLQ<170GeV/c2 for β=1.
The cross sections times branching ratio. KAPPA is an 'anomalous magnetic moment' (theoretical parameter). See text for details.
We present a measurement of the forward-backward charge asymmetry of the process pp¯→Z0/γ+X,Z0/γ→e+e− at Mee>MZ, using 110pb−1 of data at s=1.8TeV collected at the Collider Detector at Fermilab. The measured charge asymmetries are 0.43±0.10 in the invariant mass region Mee>105GeV/c2, and 0.070±0.016 in the region 75<Mee<105GeV/c2. These results are consistent with the standard model values of 0.528±0.009 and 0.052±0.002, respectively.
The forward-backward asymmetry resuts from angular differential cross section : D(SIG)/D(COS(THETA*) = A*(1 + COS(THETA*)**2) + B*COS(THETA*), where THETA * is the emission angle of the E- relative to the quark momentum in the rest frame of the E+ E- pair.
We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.
A result of the study of the W + >= 4JETS data sample used in PRL 74, 2626, based on 67 pb-1 of integrated luminosity.. Different fit results due to two choices of the Q2 scale in VECBOS program (see paper).
The results of total cross section measurements for theνμ,\(\bar \nu _\mu\) interactions with isoscalar target in the 3 – 30 GeV energy range have been presented. The data were obtained with the IHEP-JINR Neutrino Detector in the “natural” neutrino beams of the U-70 accelerator. Neutrino fluxes were obtained by averaging the spectra, based on the calculations with the use of the experimental data on secondary particle yields from the target and muon fluxes measurements in 9 gaps of the muon filter, as well as the spectra determined from quasi-elastic events and spectra defined by extrapolating differential distributiondσ/dy in the regiony=0. The significant deviation from the linear dependence forσtot versus neutrino energy is determined in the energy range less than 15 GeV.
No description provided.
No description provided.
An analysis has been performed of neutrino and antineutrino interactions with protons and neutrons in a deuterium bubble chamber. The interactions under study are quasielastic neutrino-neutron scattering and one-, two- and three-pion production reactions. Results are presented on cross sections, effective mass distributions, resonance production, momentum transfer distributions and coefficients of the decay angular distributions. Where possible, comparisons are made with existing theoretical models and predictions.
No description provided.
Numerical values supplied by A.Tenner.
Numerical values supplied by A.Tenner.
The cross sections of neutrino and antineutrino quasielastic reactions\(vn \to \mu ^ -p,\bar vp \to \mu ^ +n,\bar vp \to \mu ^ +\Lambda\) were studied in the neutrino energy range between 3 and 30 GeV. In comparison withV-A theory axial mass parameters ofMA=(1.06±0.05±0.14) GeV/c2 from neutrino andMA=(0.71±0.10±0.20) GeV/c2 from antineutrino data were found. The total cross-section for the hyperon production process can be described byMA=1.0 GeV/c2.
Measured Quasi-Elastic total cross section.
We present the final results from the search for μe pairs produced in neutrino interactions using the freon filled bubble chamber SKAT. The rate of μ−e+ pairs to charged current events above the charm threshold is\(R_{\mu ^ -e^ +}= (4.8 \pm 1.1)10^{ - 3} \). Assuming charm particle production to be the origin of the positron we calculate\(R_{\Lambda _c^ +}= (6.2 \pm 3.1)10^{ - 2} \) andRD=(2.8±0.9)10−2. We observe no considerable μ−e− pair production above the background. In the regionEv>3 GeV,pμ,e>1.0 GeV/c andpμ>pe we find with a 90% confidence level the limit\(R_{\mu ^ -e^ -}< 1.7 10^{ - 4} \).
No description provided.
No description provided.
No description provided.