Search for a high-mass dimuon resonance produced in association with b quark jets at $\sqrt{s}$=13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2023) 043, 2023.
Inspire Record 2678141 DOI 10.17182/hepdata.141455

A search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z$'$ boson couplings to a bb quark pair ($g_\mathrm{b}$), an sb quark pair ($g_\mathrm{b}\delta_\mathrm{bs}$), and any same-flavor charged lepton ($g_\ell$) or neutrino pair ($g_\nu$), with $\left|g_{\nu}\right| = \left|g_\ell\right|$. For a Z$'$ boson with a mass $m_{\mathrm{Z}'}$ = 350 GeV (2 TeV) and $\left|\delta_\mathrm{bs}\right|$$\lt$ 0.25, the majority of the parameter space with 0.0057 $\lt$$\left|g_\ell\right|$$\lt$ 0.35 (0.25 $\lt$$\left|g_\ell\right|$$\lt$ 0.43) and 0.0079 $\lt$$\left|g_\mathrm{b}\right|$$\lt$ 0.46 (0.34 $\lt$$\left|g_\mathrm{b}\right|$$\lt$ 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z$'$ model with parameters consistent with low-energy b $\to$ s$\ell\ell$ measurements. In this scenario, most of the allowed parameter space is excluded for a Z$'$ boson with 350 $\lt m_{\mathrm{Z}'}$ $\lt$ 500 GeV, while the constraints are less stringent for higher $m_{\mathrm{Z}'}$ hypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date.

0 data tables match query

Search for long-lived particles using displaced vertices with low-momentum tracks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-EXO-24-033, 2025.
Inspire Record 3081697 DOI 10.17182/hepdata.166009

A search for long-lived particles using final states including a displaced vertex with low-momentum tracks, large missing transverse momentum, and a jet from initial-state radiation is presented. This search uses proton-proton collision data at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC in 2017 and 2018, with a total integrated luminosity of 100 fb$^{-1}$. This analysis adopts specific supersymmetric (SUSY) coannihilation scenarios as benchmark signal models, characterized by a next-to-lightest SUSY particle (NLSP) with a mass difference of less than 25GeV relative to the lightest SUSY particle, assumed to be a bino-like neutralino. In the top squark ($\tilde{\mathrm{t}}$) NLSP model, the NLSP is a long-lived $\tilde{\mathrm{t}}$, while in the bino-wino NLSP scenario, the mass-degenerate NLSPs are a wino-like long-lived neutralino and a short-lived chargino. The search excludes top squarks with masses less than 400$-$1100 GeV and wino-like neutralinos with masses less than 220$-$550 GeV, depending on the signal parameters, including the mass difference, mass, and lifetime of the long-lived particle. It sets the most stringent limits to date for the $\tilde{\mathrm{t}}$ and bino-wino NLSP models.

0 data tables match query

Comprehensive analysis of local and nonlocal amplitudes in the $B^0\rightarrow K^{*0}\mu^+\mu^-$ decay

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
JHEP 09 (2024) 026, 2024.
Inspire Record 2795535 DOI 10.17182/hepdata.161096

A comprehensive study of the local and nonlocal amplitudes contributing to the decay $B^0\rightarrow K^{*0}(\to K^+\pi^-) \mu^+\mu^-$ is performed by analysing the phase-space distribution of the decay products. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 8.4fb$^{-1}$ collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient $C_9$, responsible for vector dimuon currents, exhibits a $2.1\sigma$ deviation from the Standard Model expectation. The Wilson Coefficients $C_{10}$, $C_{9}'$ and $C_{10}'$ are all in better agreement than $C_{9}$ with the Standard Model and the global significance is at the level of $1.5\sigma$. The model used also accounts for nonlocal contributions from $B^{0}\to K^{*0}\left[\tau^+\tau^-\to \mu^+\mu^-\right]$ rescattering, resulting in the first direct measurement of the $b s\tau\tau$ vector effective-coupling $C_{9\tau}$.

0 data tables match query

Model-agnostic likelihood for the reinterpretation of the $B^+\to K^+ν\barν$ measurement at Belle II

The Belle-II collaboration Abumusabh, Merna ; Adachi, Ichiro ; Aggarwal, Latika ; et al.
Phys.Rev.D 112 (2025) 092016, 2025.
Inspire Record 2947386 DOI 10.17182/hepdata.166082

We recently measured the branching fraction of the $B^{+}\rightarrow K^{+}ν\barν$ decay using 362fb$^{-1}$ of on-resonance $e^+e^-$ collision data under the assumption of Standard Model kinematics, providing the first evidence for this decay. To facilitate future reinterpretations and maximize the scientific impact of this measurement, we publicly release the full analysis likelihood along with all necessary material required for reinterpretation under arbitrary theoretical models sensitive to this measurement. In this work, we demonstrate how the measurement can be reinterpreted within the framework of the Weak Effective Theory. Using a kinematic reweighting technique in combination with the published likelihood, we derive marginal posterior distributions for the Wilson coefficients, construct credible intervals, and assess the goodness of fit to the Belle II data. For the Weak Effective Theory Wilson coefficients, the posterior mode of the magnitudes $|C_\mathrm{VL}+C_\mathrm{VR}|$, $|C_\mathrm{SL}+C_\mathrm{SR}|$, and $|C_\mathrm{TL}|$ corresponds to the point ${(11.3, 0.0, 8.2)}$. The respective 95% credible intervals are $[1.9, 16.2]$, $[0.0, 15.4]$, and $[0.0, 11.2]$.

0 data tables match query

Version 2
Inclusive nonresonant multilepton probes of new phenomena at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 105 (2022) 112007, 2022.
Inspire Record 2034279 DOI 10.17182/hepdata.110691

An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying $\tau$ leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the LHC in 2016-2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845-1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vector-like $\tau$ lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125-150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12-1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vector-like doublet model, these constraints are the most stringent to date. For the vector-like singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations.

0 data tables match query

Search for heavy neutral resonances decaying to tau lepton pairs in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 111 (2025) 112004, 2025.
Inspire Record 2856405 DOI 10.17182/hepdata.155459

A search for heavy neutral gauge bosons (Z') decaying into a pair of tau leptons is performed in proton-proton collisions at $\sqrt{s}$ = 13 TeV at the CERN LHC. The data were collected with the CMS detector and correspond to an integrated luminosity of 138 fb$^{-1}$. The observations are found to be in agreement with the expectation from standard model processes. Limits at 95% confidence level are set on the product of the Z' production cross section and its branching fraction to tau lepton pairs for a range of Z' boson masses. For a narrow resonance in the sequential standard model scenario, a Z' boson with a mass below 3.5 TeV is excluded. This is the most stringent limit to date from this type of search.

0 data tables match query

Version 3
Search for new phenomena in events with an energetic jet and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden ; Abbott, Dale Charles ; et al.
Phys.Rev.D 103 (2021) 112006, 2021.
Inspire Record 1847779 DOI 10.17182/hepdata.102093

Results of a search for new physics in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$ at a center-of-mass energy of 13 TeV collected in the period 2015-2018 with the ATLAS detector at the Large Hadron Collider. Compared to previous publications, in addition to an increase of almost a factor of four in the data size, the analysis implements a number of improvements in the signal selection and the background determination leading to enhanced sensitivity. Events are required to have at least one jet with transverse momentum above 150 GeV and no reconstructed leptons ($e$, $\mu$ or $\tau$) or photons. Several signal regions are considered with increasing requirements on the missing transverse momentum starting at 200 GeV. Overall agreement is observed between the number of events in data and the Standard Model predictions. Model-independent $95%$ confidence-level limits on visible cross sections for new processes are obtained in the range between 736 fb and 0.3 fb. Results are also translated into improved exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, supersymmetric particles in several compressed scenarios, axion-like particles, and new scalar particles in dark-energy-inspired models. In addition, the data are translated into bounds on the invisible branching ratio of the Higgs boson.

0 data tables match query

Model-agnostic search for dijet resonances with anomalous jet substructure in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
Rept.Prog.Phys. 88 (2025) 067802, 2025.
Inspire Record 2856408 DOI 10.17182/hepdata.156054

This paper presents a model-agnostic search for narrow resonances in the dijet final state in the mass range 1.8-6 TeV. The signal is assumed to produce jets with substructure atypical of jets initiated by light quarks or gluons, with minimal additional assumptions. Search regions are obtained by utilizing multivariate machine-learning methods to select jets with anomalous substructure. A collection of complementary anomaly detection methods - based on unsupervised, weakly supervised, and semisupervised algorithms - are used in order to maximize the sensitivity to unknown new physics signatures. These algorithms are applied to data corresponding to an integrated luminosity of 138 fb$^{-1}$, recorded by the CMS experiment at the LHC, at a center-of-mass energy of 13 TeV. No significant excesses above background expectations are seen. Exclusion limits are derived on the production cross section of benchmark signal models varying in resonance mass, jet mass, and jet substructure. Many of these signatures have not been previously sought, making several of the limits reported on the corresponding benchmark models the first ever. When compared to benchmark inclusive and substructure-based search strategies, the anomaly detection methods are found to significantly enhance the sensitivity to a variety of models.

0 data tables match query

Search for supersymmetry using vector boson fusion signatures and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2024) 116, 2024.
Inspire Record 2835159 DOI 10.17182/hepdata.156776

This paper presents a search for supersymmetric particles in models with highly compressed mass spectra, in events consistent with being produced through vector boson fusion. The search uses 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Events containing at least two jets with a large gap in pseudorapidity, large missing transverse momentum, and no reconstructed leptons are selected. A boosted decision tree is used to separate events consistent with the production of supersymmetric particles from those due to Standard Model backgrounds. The data are found to be consistent with Standard Model predictions. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a bino-like neutralino with a mass similar to that of the lightest chargino and second-to-lightest neutralino, both of which are wino-like. Lower limits at 95% confidence level on the masses of next-to-lightest supersymmetric partners in this simplified model are established between 117 and 120 GeV when the lightest supersymmetric partners are within 1 GeV in mass.

0 data tables match query

Version 3
Search for neutral long-lived particles in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS calorimeter

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2022) 005, 2022.
Inspire Record 2043503 DOI 10.17182/hepdata.115578

A search for decays of pair-produced neutral long-lived particles (LLPs) is presented using 139 fb$^{-1}$ of proton-proton collision data collected by the ATLAS detector at the LHC in 2015-2018 at a centre-of-mass energy of 13 TeV. Dedicated techniques were developed for the reconstruction of displaced jets produced by LLPs decaying hadronically in the ATLAS hadronic calorimeter. Two search regions are defined for different LLP kinematic regimes. The observed numbers of events are consistent with the expected background, and limits for several benchmark signals are determined. For a SM Higgs boson with a mass of 125 GeV, branching ratios above 10% are excluded at 95% confidence level for values of $c$ times LLP mean proper lifetime in the range between 20 mm and 10 m depending on the model. Upper limits are also set on the cross-section times branching ratio for scalars with a mass of 60 GeV and for masses between 200 GeV and 1 TeV.

0 data tables match query