Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.
No description provided.
No description provided.
No description provided.
In a scintillation-counter experiment, we have observed two narrow, neutral mesons in addition to the well-established η′ (958) in the reaction π−p→M0n at 2.4 GeVc. We observe a mass of 940.5 ± 1.7 MeV, Γ<10.4 MeV for the M0(940), and a mass of 962.9 ± 1.7 MeV, Γ<5.9 MeV for the δ0.
CROSS SECTION OVERALL UNCERTAINTY (APART FROM ETA PRODUCTION) ABOUT 30 PCT.
Differential cross sections for π+p elastic scattering in the momentum region 1.2 to 2.3 GeV/c are presented for the center-of-mass angular range 0.9>cosθ>−0.9. Typically, 50 000 events were obtained at each of 16 momenta using magnetostrictive-readout wire spark chambers to detect the particles scattered from a liquid hydrogen target. The results are compared to those of the CERN-71 phase-shift analysis. The well-known dips at t≅−0.7 (GeV/c)2 and at u′=−0.2 (GeV/c)2 are observed. In addition, structure is seen at constant u′=−1.3 (GeV/c)2. The results of a pion attenuation study in iron are also presented.
No description provided.
No description provided.
No description provided.
Using new data from 100 GeV c π − interactions, we find the energy dependence of the invariant cross-section in the target fragmentation (central) region to be consistent with an A + Bs − 1 2 (C + Ds − 1 4 ) behavior. The leading particle peak near x = + 1 exhibits a width in x which becomes smaller with increasing energy and an integrated cross section which is approximately energy independent.
No description provided.
Results are presented on the topological cross sections obtained for antiproton-proton interactions from an exposure of the Fermilab 30-inch bubble chamber to a 100 GeV/ c negative beam enriched in p 's. The p p inelastic cross section is found to be σ inel = 34.6 ± 0.4 mb, and the average inelastic charged particle multiplicity to be 〈 n 〉 = 6.74 ± 0.05.
ERRORS ARE STATISTICAL ONLY EXCEPT FOR 2-PRONG CROSS-SECTIONS.
EXPONENTIAL FIT TO ELASTIC T DISTRIBUTION TO CORRECT FOR AN APPARENT LOSS OF EVENTS AT SMALL -T.
MOMENTS OF 100 GEV/C AP P MULTIPLICITY DISTRIBUTION.
In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.
SYSTEMATIC CORRECTIONS INCLUDED IN ERRORS.
FROM FIT, FORWARD D(SIG)/DT = 31.84 +- 0.68 MB/GEV**2, AND AGREES WITH OPTICAL POINT FROM MEASURED TOTAL CROSS SECTIONS.
A streamer-chamber spectrometer is triggered by fast forward protons from 4-GeV/c π−p interactions at the Bevatron. Meson-resonance production in the backward, Iu=32 exchange reactions π−p→pM− are studied, where M− refers to π−, ρ−, A1−, A2−, and B−. Elastic scattering and ρ− production are observed and discussed in detail. No backward A1−, A2−, or B− production is observed at the level of approximately 5 βb.
Axis error includes +- 15/15 contribution.
No description provided.
Axis error includes +- 15/15 contribution.
Inclusive single-particle spectra for π± production are presented for data from π±p interactions at 100 GeV/c. The spectra for the four reactions π±p→π±+anything are compared as a function of laboratory longitudinal momentum, Feynman x, center-of-mass (c.m.) rapidity, and transverse momentum squared. Comparisons are also made between these data and analogous data from 16 and 18.5 GeV/c π±p interactions and the energy dependence is discussed. Average values of the transverse momentum are given as a function of the longitudinal momentum and charged-particle multiplicity. A comparison of the charge distributions is presented as a function of rapidity and c.m. energy.
No description provided.
No description provided.
No description provided.
The forward charge-exchange differential cross section has been measured using two Čerenkov spectrometers at five energies of incident pions. The resulting cross-section values are 4.02 ± 0.22, 3.61 ± 0.13, 4.19 ± 0.13, 3.91 ± 0.12, 3.02 ± 0.14 mb/sr at incident pion energies 400, 450, 500, 550 and 600 MeV, respectively. These values are in a good agreement with dispersion-relation predictions.
No description provided.
Inclusive and semi-inclusive cross sections for gp0 production in 100, 200, and 360 GeV/c π−p interactions are presented. Differential cross sections for ρ0 production as functions of c.m. rapidity and transverse momentum are compared with the corresponding differential cross sections for pion production. Effects of various methods of estimating background on the values obtained for ρ0 production cross sections are discussed. About 10% of the final-state charged pions appear to come from ρ0 decay. Thus, while ρ0 production and decay is a significant source of final-state pions, other sources must contribute the majority of the produced pions.
No description provided.
No description provided.
No description provided.