Observation of $Z$ production in proton-lead collisions at LHCb

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
JHEP 09 (2014) 030, 2014.
Inspire Record 1300150 DOI 10.17182/hepdata.64260

The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{fwd})&=&13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the proton beam and \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{bwd}) & =&10.7^{+8.4}_{-5.1}\text{(stat.)}\pm1.0\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the lead beam, where the first uncertainty is statistical and the second systematic.

2 data tables

The measured Z production cross-sections in proton-lead collisions, measured in the fiducial region defined in the table, in the forward and backward directions. The statistical uncertainty is defined as the 68% confidence interval with symmetric coverage assuming that the number of candidates follows a Poisson distribution.

The forward-backward ratio measured in the overlap region 2.5 < ABS(YRAP) < 4.0. The first uncertainty is statistical, defined as the 68% confidence interval with symmetric coverage. The second uncertainty is systematic and includes the uncertainty on the acceptance correction factor, BETA, for the difference in the detector acceptance of the muons between the forward and backward directions.


Measurement of Upsilon production in pp collisions at {\surd}s = 7 TeV

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adeva, B. ; et al.
Eur.Phys.J.C 72 (2012) 2025, 2012.
Inspire Record 1091071 DOI 10.17182/hepdata.58651

The production of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons in proton-proton collisions at the centre-of-mass energy of sqrt(s)=7 TeV is studied with the LHCb detector. The analysis is based on a data sample of 25 pb-1 collected at the Large Hadron Collider. The Upsilon mesons are reconstructed in the decay mode Upsilon -&gt; mu+ mu- and the signal yields are extracted from a fit to the mu+ mu- invariant mass distributions. The differential production cross-sections times dimuon branching fractions are measured as a function of the Upsilon transverse momentum pT and rapidity y, over the range pT &lt; 15 GeV/c and 2.0 &lt; y &lt; 4.5. The cross-sections times branching fractions, integrated over these kinematic ranges, are measured to be sigma(pp -&gt; Upsilon(1S) X) x B(Upsilon(1S)-&gt;mu+ mu-) = 2.29 {\pm} 0.01 {\pm} 0.10 -0.37 +0.19 nb, sigma(pp -&gt; Upsilon(2S) X) x B(Upsilon(2S)-&gt;mu+ mu-) = 0.562 {\pm} 0.007 {\pm} 0.023 -0.092 +0.048 nb, sigma(pp -&gt; Upsilon(3S) X) x B(Upsilon(3S)-&gt;mu+ mu-) = 0.283 {\pm} 0.005 {\pm} 0.012 -0.048 +0.025 nb, where the first uncertainty is statistical, the second systematic and the third is due to the unknown polarisation of the three Upsilon states.

17 data tables

Integrated cross-sections times dimuon branching fractions in the PT range < 15 GeV/c and rapidity in the range 2.0-4.0. The second systematic (sys) error is due to the unknown polarisation of the three states.

Double differential cross section for UPSI(1S) production times the dimuon branching fraction as a function of PT for the rapidity region 2.0-2.5. The second systematic (sys) error is due to the unknown polarisation of the UPSI(1S).

Double differential cross section for UPSI(1S) production times the dimuon branching fraction as a function of PT for the rapidity region 2.5-3.0. The second systematic (sys) error is due to the unknown polarisation of the UPSI(1S).

More…

Search for the lepton number violating process anti-nu/mu e- --> mu- anti-nu/e.

The NuTeV collaboration Formaggio, J.A. ; Yu, J. ; Yu, J. ; et al.
Phys.Rev.Lett. 87 (2001) 071803, 2001.
Inspire Record 555474 DOI 10.17182/hepdata.42668

The NuTeV experiment at Fermilab has used a sign-selected neutrino beam to perform a search for the lepton number violating process $\bar{\nu}_mu e^- \to \mu^- \bar{\nu}_e$, and to measure the cross-section of the Standard Model inverse muon decay process $\nu_{\mu} e^- \to \mu^- \nu_e$. NuTeV measures the inverse muon decay asymptotic cross-section $\sigma/E$ to be 13.8 $\pm$ 1.2 $\pm$ 1.4 x $10^{-42} cm^2$/GeV. The experiment also observes no evidence for lepton number violation and places one of the most restrictive limits on the LNV/IMD cross-section ratio at $\sigma (\bar{\nu}_{\mu} e^- \to \mu^- \bar{\nu}_e) /\sigma (\nu_{\mu}e^- \to \mu^- \nu_e$) $\le$ 1.7% at 90% C.L. for V-A couplings and $\le$ 0.6% for scalar couplings.

2 data tables

No description provided.

No description provided.


Study of fermion pair production in e+ e- collisions at 130-GeV to 183-GeV

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Eur.Phys.J.C 12 (2000) 183-207, 2000.
Inspire Record 498072 DOI 10.17182/hepdata.49128

The cross sections and forward-backward asymmetries of hadronic and leptonic events produced in e+e- collisions at centre-of-mass energies of 130-183 GeV are presented. Results for ee, mumu, tautau, qq, bb and cc production show no significant deviation from the Standard Model predictions. This enable constraints to be set upon physics beyond the Standard Model such as four-fermion contact interactions, leptoquarks, Z' bosons and R-parity violating squarks and sneutrinos. Limits on the energy scale Lambda of eeff contact interactions are typically in the range from 2-10 TeV. Limits on R-parity violating sneutrinos reach masses of a few hundred GeV for large values of their Yukawa couplings.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of W and Z boson production cross-sections

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 052003, 1999.
Inspire Record 494696 DOI 10.17182/hepdata.42125

DO has measured the inclusive production cross section of W and Z bosons in a sample of 13 pb$^{-1}$ of data collected at the Fermilab Tevatron. The cross sections, multiplied by their leptonic branching fractions, for production in pbar-p collisions at sqrt{s}=1.8 TeV are sigma_W*B(W->e nu) = 2.36+-0.02+-0.08+-0.13 nb, sigma_W*B(W->mu nu) = 2.09+-0.06+-0.22+-0.11 nb, sigma_Z*B(Z->e+ e-) = 0.218+-0.008+-0.008+-0.012 nb, and sigma_Z*B(Z->mu+ mu-) = 0.178+-0.022+-0.021+-0.009 nb, where the first uncertainty is statistical and the second systematic; the third reflects the uncertainty in the integrated luminosity. For the combined electron and muon analyses, we find sigma_W*B(W->l mu)/sigma_Z*B(Z->l+ l-) = 10.90+-0.52. Assuming standard model couplings, we use this result to determine the width of the W boson, and obtain Gamma(W) = 2.044+-0.097 GeV.

2 data tables

No description provided.

Combined electron and muon analysis.


Search for the B/c meson.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 398 (1997) 207-222, 1997.
Inspire Record 428162 DOI 10.17182/hepdata.47617

In a sample of 3.02 million hadronic Z 0 decays collected by the DELPHI detector, 270 J ψ → ℓ + ℓ − candidates have been selected. A search for fully reconstructed B c ± mesons has yielded one B c ± → J ψ π ± candidate, no B c ± → J ψ ℓ ± ν ℓ candidates, and one B c ± → J ψ , π + π − π ± candidate, consistent with expected background in each channel. The following 90% confidence level upper limits are determined: Br(Z 0 → B c ± X) × Br(B c ± → J ψ π ± ) < (1.05 to 0.84) × 10 −4 and Br(Z 0 → B c ± X) × Br(B c ± → J ψ ℓ ± ν ℓ ) < (5.8 to 5.0) × 10 −5 , where the ranges quoted correspond to the range of predicted B c ± lifetimes from 0.4 to 1.4 ps, and Br(Z 0 → B c ± X) × Br(B c ± → J ψ π + π − π ± ) < 1.75 × 10 −4 , constant over the range of predicted B c ± lifetimes.

1 data table

B/C life-time equals (0.4 to 1.4) ps.


A high statistics search for nu/mu (anti-nu/mu) --> nu/e (anti-nu/e) oscillations in the small mixing angle regime.

The CCFR/NuTeV collaboration Romosan, A. ; Arroyo, C.G. ; de Barbaro, L. ; et al.
Phys.Rev.Lett. 78 (1997) 2912-2915, 1997.
Inspire Record 426120 DOI 10.17182/hepdata.41667

Limits on $\nu_\mu (\overline{\nu}_\mu) \to \nu_e (\overline{\nu}_e)$ oscillations based on a statistical separation of $\nu_e N$ charged current interactions in the CCFR detector at Fermilab are presented. $\nu_e$ interactions are identified by the difference in the longitudinal shower energy deposition pattern of $\nu_e N \rightarrow eX$ versus $\nu_\mu N \to \nu_\mu X$ interactions. Neutrino energies range from 30 to 600 GeV with a mean of 140 GeV, and $\nu_\mu$ flight lengths vary from 0.9 km to 1.4 km. The lowest 90% confidence upper limit in $sin^2 2\alpha$ of $1.1 \times 10^{-3}$ is obtained at $\Delta m^2 \sim 300 eV^2$. For $sin^2 2\alpha = 1$, $\Delta m^2 > 1.6 eV^2$ is excluded, and for $\Delta m^2 \gg 1000 eV^2$, $sin^2 2\alpha > 1.8 \times 10^{-3}$ is excluded. This result is the most stringent limit to date for $\Delta m^2 > 25 eV^2$ and it excludes the high $\Delta m^2$ oscillation region favoured by the LSND experiment. The $\nu_\mu$-to-$\nu_e$ cross-section ratio was measured as a test of $\nu_\mu (\bar\nu_\mu) \leftrightarrow \nu_e (\bar\nu_e)$ universality to be $1.026 \pm 0.055$.

2 data tables

ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUE oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.

No description provided.


A Measurement of the tau leptonic branching fractions

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 357 (1995) 715-724, 1995.
Inspire Record 398321 DOI 10.17182/hepdata.48138

A sample of 25000 Z 0 → τ + τ − events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the τ lepton. The results are B(τ → eν ν ) = (17.51 ± 0.39) % and B(τ → μν ν ) = (17.02 ± 0.31) %. The ratio of the muon and electron couplings to the weak charged current is measured to be g μ g e = 1.000 ± 0.013 , satisfying e-μ universality. The leptonic branching fraction corrected to the value for a massless lepton, assuming e-μ universality, is found to be B(τ → lν ν ) = (17.50 ± 0.25) %.

3 data tables

Axis error includes +- 0.23/0.23 contribution (Data statistics).

Axis error includes +- 0.19/0.19 contribution (Data statistics).

Combined from the two branching fractions above. E-MU universality assumed.