The cross sections of several exclusive reactions in p p interactions are given. In the channels p p → p p π + π − and p p → p p 2π + 2π − which dominate the interactions, the single and double diffractive dissociations are analysed and compared to the results obtained with K ± p interactions at the same energy, pp and p p interactions at other energies. The test of factorization at the p → p π + π − vertex is well verified. The process p p → Δ ++ Δ ++ is studied and the cross sections of Δ ++ , Δ ++ , ϱ 0 and f 0 production are also given.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
292+-7 MUB - CORRECTED VALUE FOR FIRST REACTION (SLOW PROTONS). M(P 4PI) <= 3.5 GEV FOR REACTIONS WITH FOUR PIONS.
No description provided.
No description provided.
Antilambda production is studied inK−p interactions at 32 GeV/c. Both total and differential cross sections are presented. The inclusive\(\bar \Lambda \) production cross section amounts to 109±7 μb. A remarkable energy dependence is observed, σ(\(\bar \Lambda \)) increasing by a factor of four between 14.3 and 32 GeV/c. Thep⊥2 distribution exhibits an exponential fall-off with a slope of 3.3±0.2 (GeV/c)−2. Most of the\(\bar \Lambda \)'s are emitted in the forward hemisphere. The invariantx distribution increases between 14.3 and 32 GeV/c. Data are presented for\(\bar \Lambda \) production inK-p→Λ\(\bar \Lambda \)+XK-p→\(\bar \Lambda \)Kn+X, andK-p→\(\bar \Lambda \)p+X.
No description provided.
We present a systematic investigation of channel cross sections in K − p interactions at 32 GeV/ c . The energy dependence of these cross sections is discussed. We also investigate a few non-diffractive two-body reactions. The total cross sections of the two reactions K − p → K ∗− (890) p and K − p → K ∗− (1420) p have a markedly different energy behaviour. There is clear evidence for the reaction K − p → K ∗0 (890) N 0 (1688) ; its differnttial cross section exhibits a sharp forward slope of 24 ± 3 GeV −2 .
FROM AK0 P PI- FINAL STATE.
DOUBLE RESONANCE CHANNEL CROSS SECTIONS FROM BREIT-WIGNER FIT CORRECTED FOR BACKGROUND AND DIFFRACTIVE PROCESSES.
No description provided.