A detailed account is given of high-precision measurements of the total hadronic cross sections of proton-antiproton and proton-proton interactions at centre-of-mass energies of 30.6, 52.8 and 62.7 GeV. The experiment was performed at the CERN Intersecting Storage Rings (ISR) using the total interaction-rate method, in which additive correction terms for trigger losses were held to less than 6% of the final result. An experimental determination of the vertical beam-displacement scale permitted luminosity-monitor calibrations to be made with high intrinsic accuracy. The overall precision (systematic and statistical errors combined) achieved in the total cross sections was ± 1.1% for proton-antiproton reactions and 0.7% for proton-proton reactions. In the proton-proton case the measurement was the most precise such measurement made at the ISR.
No description provided.
ERRORS CONTAIN BOTH STATISTICS AND SYSTEMATICS.
ERRORS CONTAIN POINT-TO-POINT AND THE ERROR-INDEPENDANT ERRORS.
We present experimental evidence for a resonant behaviour of the hadron production from e + e − annihilations at the e + e − storage ring ADONE. A Breit-Wigner fit to the enhancement present between 1800 and 1850 MeV gives the following parameters M = 1812 −13 +7 MeV, Γ = 34 −15 +21 MeV.
MULTIHADRON EVENTS (AT LEAST THREE CHARGED TRACKS) PER UNIT LUMINOSITY.
We present measurements of the total interaction cross section and of the single-diffractive dissociation cross section in αα collisions at √ s = 126 GeV. The result obtained for the total cross section, σ tot = (315±18) mb, is a substantial improvement on the precision of earlier measurements. Earlier elastic data were re-analysed, incorporating, through the optical theorem, the present σ tot measurement, resulting in improved determinations of the forward slope, b − t <0.07 = (87±4) GeV −2 , and of the integrated elastic cross section, σ el = (58±6) mb. The single-diffractive differential cross section falls exponentially with momentum transfer at small values of t with a slope b sd = (19.3 ± 0.6) GeV −2 . The integrated single-diffractive cross section is σ sd = (16.6±2.5) mb. The topology of charged tracks resulting from the disintegration of the α in single-diffractive events reveals a two-component distribution. The cross section data are compared with multiple-scattering models.
Total cross section by total rate method. Systematic errors included.
Reanalysis using data from ISR experiments R-418, and R-807.
We measured the total cross section for p p scattering at s = 52.8 GeV at the CERN ISR, using the direct, total-rate method. The result obtained, σ tot ( p p ) = 44.70 ± 0.53 mb , shows that, in common with σ tot (pp), this cross section also starts to rise in the ISR energy range. We remeasured the total cross section for pp scattering at the same energy, obtaining σ tot (pp) = 43.26 ± 0.33 mb, and found for the difference, Δσ tot = σ tot ( p p ) − σ tot ( pp ) , a value of 1.44±0.45 mb.
No description provided.
No description provided.
We measured the elastic scattering of αα at s = 126 GeV and of α p at s = 89 GeV . For αα , the differential cross section d σ /d t has a diffractive pattern minima at | t | = 0.10 and 0.38 GeV 2 . At small | t | = 0.05−0.07 GeV 2 , this cross section behaves like exp[(100 ± 10) t ]. Extrapolating a fit to the data to the optical point, we obtained for the total cross section α tot ( αα ) = 250 ± 50 mb and an integrated elastic cross section σ e1 ( αα ) = 45 ± mb. Another method of estimating σ tot ( αα ), based on measuring the interaction rate, yielded 295 ± 40 mb. For α p, d σ /d t has aminimum at | t | = 0.20 GeV 2 , and for 0.05 < | t | < 0.18 GeV 2 behaves like exp[(41 ± 2) t ]. Extrapolating this slope to | t | = 0, we found σ tot ( α p) = 130 ± 20 and σ e1 ( α p) = 20 ± 4mb. Results on pp elastic scattering at s = 63 GeV agree with previous ISR experiments.
Axis error includes +- 15/15 contribution.
Axis error includes +- 15/15 contribution.
METHOD 1 FOR SIG IS USING OPTICAL THEOREM. METHOD 2 FOR SIG IS BASED ON THE MEASURED LUMINOSITY-MONITOR CROSS SECTIONS.
We measured the differential cross section for p̄p and pp elastic scattering in the momentum-transfer range 0.01 <| t | < 1.0 GeV 2 at the CERN Intersecting Storage Rings with center-of-mass energy s = 52.8 GeV . Fitting the differential cross section with an exponential [ A exp ( bt )], we found b p p = 13.92 ± 0.59 GeV −2 for | t | < 0.05 GeV 2 , whilst for | t | > 0.09 GeV 2 , b p p = 10.68 ± 0.26 GeV −2 . Using the optical theorem, we obtained for the total cross section σ tot ( p p)= 44.86 ± 0.78 mb and, by integrating the differential cross section, we obtained for the total elastic cross section σ el ( p p) = 7.89 ± 0.28 mb . Calculations of σ tot combining elastic-rate and total-rate measurements are also given. All of these measurements were also performed for pp scattering at the same energy, and the results for both reactions are compared.
NUMERICAL VALUES OF DATA IN FIGURE TAKEN FROM PREPRINT CERN-EP/82-65.
NUMERICAL VALUES OF DATA ON FIGURES TAKEN FROM PREPRINT CERN-EP/82-65.
No description provided.
We measured the total cross section for p p scattering at √ s = 53 GeV at the CERN ISR. The method was based on the measurement of the total interaction rate and of the ISR luminosity. The result obtained, σ tot = 44.1 ± 2.0 mb, suggests that σ tot ( p p) starts increasing at ISR energies. A measurement of the p p differential cross section was also performed: the results show a change in the slope at | t | ≈ 0.1 GeV 2 , similar to that observed in pp scattering.
No description provided.
No description provided.
The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor and transverse sphericity, each defined using the final-state charged particles' momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged particle transverse momentum, charged particle multiplicity and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data.
Normalized distributions of Tranverse Thrust for 4 ranges of leading particle PT.
Normalized distributions of Tranverse Thrust for 5 lower limit values of leading particle PT.
Normalized distributions of Tranverse Thrust Minor for 4 ranges of leading particle PT.
This paper presents cross sections for the production of a W boson in association with jets, measured in proton--proton collisions at $\sqrt{s}=7$ TeV with the ATLAS experiment at the Large Hadron Collider. With an integrated luminosity of $4.6 fb^{-1}$, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1 TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.
Distribution of inclusive jet multiplicity.
Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distributions sensitive to the underlying event are studied in events containing one or more charged-particle jets produced in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector at the Large Hadron Collider (LHC). These measurements reflect 800 inverse microbarns of data taken during 2010. Jets are reconstructed using the antikt algorithm with radius parameter R varying between 0.2 and 1.0. Distributions of the charged-particle multiplicity, the scalar sum of the transverse momentum of charged particles, and the average charged-particle pT are measured as functions of pT^JET in regions transverse to and opposite the leading jet for 4 GeV < pT^JET < 100 GeV. In addition, the R-dependence of the mean values of these observables is studied. In the transverse region, both the multiplicity and the scalar sum of the transverse momentum at fixed pT^JET vary significantly with R, while the average charged-particle transverse momentum has a minimal dependence on R. Predictions from several Monte Carlo tunes have been compared to the data; the predictions from Pythia 6, based on tunes that have been determined using LHC data, show reasonable agreement with the data, including the dependence on R. Comparisons with other generators indicate that additional tuning of soft-QCD parameters is necessary for these generators. The measurements presented here provide a testing ground for further development of the Monte Carlo models.
Mean value of N(C=CHARGED) v jet PT for R=0.2.
Mean value of N(C=CHARGED) v jet PT for R=0.4.
Mean value of N(C=CHARGED) v jet PT for R=0.6.