Date

Single-pion production in pi- p interactions at 2.26 gev/c

Reynolds, B.G. ; Albright, John R. ; Bradley, R.H. ; et al.
Phys.Rev. 184 (1969) 1424-1442, 1969.
Inspire Record 62283 DOI 10.17182/hepdata.26478

We present an analysis of ππN final states obtained from π−p interactions at 2.26 GeV/c. Strong ρ production is present in both final states. In addition, significant nucleon isobar production is observed. We observed the following cross sections: σ(π−π0p)=3.77±0.13 mb, σ(π−π+n)=5.67±0.17 mb, σ(ρ−p)=2.19±0.09 mb, σ(Δ+(1236)π−)=0.30±0.10 mb, σ(N0(1650)π0)=0.49±0.07 mb, σ(ρ0n)=2.89±0.11 mb, σ(Δ−(1236)π+)=0.11±0.06 mb, σ(N+(1470)π−)=0.24±0.06 mb, and σ(N+(1650)π−)=0.45±0.05 mb. The spin-density matrix elements are determined for the ρ0 by interpreting the ρ0 asymmetry as an interference between the resonant P wave and a T=0 S wave. A search for the ε0 in the π+π−n final state failed to yield a direct observation of this effect.

1 data table

No description provided.


Pi-minus p elastic scattering at 2.26 gev/c

Reynolds, B.G. ; Kimel, J.D. ; Albright, John R. ; et al.
Phys.Rev. 173 (1968) 1403-1411, 1968.
Inspire Record 55955 DOI 10.17182/hepdata.26498

The elastic scattering of negative pions on protons at 2.26 GeVc has been studied using the Lawrence Radiation Laboratory 72-in. hydrogen-filled bubble chamber. The elastic scattering cross section is found to be 8.91±0.24 mb. The forward diffraction peak is well fitted by an exponential in the square of the four-momentum transfer, and the slope is found to be 8.8±0.1 GeV−2. The differential cross section is parametrized in terms of three models: optical, strong-absorption, and two-slope. It is found that the two-slope model affords the best description of the data and also does very well in predicting the polarization data of other experiments. The best-fit parameters for all three models are given. In addition, the amplitudes associated with the best fits are given for the strong-absorption and the two-slope models.

1 data table

No description provided.


Kaon-Nucleon Total Cross Sections from 0.6 to 2.65 GeV/c

Bugg, D.V. ; Gilmore, R.S. ; Knight, K.M. ; et al.
Phys.Rev. 168 (1968) 1466-1475, 1968.
Inspire Record 54183 DOI 10.17182/hepdata.26512

Total cross sections of K+ and K− mesons on protons and deuterons have been measured in a transmission experiment over the range of laboratory momentum 0.6-2.65 GeV/c. Measurements have been made on K− at 58 momenta at intervals of 25-50 MeV/c; the experimental accuracy is better than 1% above 700 MeV/c, and the momentum resolution of the beam is ±0.6%. Structure is observed in the total cross sections suggesting or confirming Y1∗ resonances at masses of 1665, 1768, 1905, 2020, 2250, and 2455 MeV/c2 and Y0∗ resonances at masses of 1695, 1819, 1870, 2100, and 2340 MeV/c2. The K+ measurements are less extensive, and are concentrated in the momentum range below 1.5 GeV/c; the experimental errors are typically ±0.2 mb. Structure previously reported in the K+p and K+d total cross sections near a laboratory momentum of 1.2 GeV/c is confirmed. Total cross sections of K+ and K− on carbon have been measured at a number of momenta with an accuracy of about ±2%.

2 data tables

No description provided.

No description provided.


Pion-Nucleon Total Cross Sections from 0.5 to 2.65 GeV/c

Carter, A.A. ; Riley, K.F. ; Tapper, R.J. ; et al.
Phys.Rev. 168 (1968) 1457-1465, 1968.
Inspire Record 54182 DOI 10.17182/hepdata.250

Total cross sections of π+ and π− mesons on protons and deuterons have been measured in a transmission experiment to relative accuracies of ±0.2% over the laboratory momentum range 0.46-2.67 GeV/c. The systematic error is estimated to be about ±0.5% over most of the range, increasing to about ±2% near both ends. Data have been obtained at momentum intervals of 25-50 MeV/c with a momentum resolution of ±0.6%. No new structure is observed in the π±p total cross sections, but results differ in several details from previous experiments. From 1-2 GeV/c, where systematic erros are the smallest, the total cross section of π− mesons on deuterons is found to be consistently higher than that of π+ mesons by (1.3±0.3)%; about half of this difference may be understood in terms of Coulomb-barrier effects. The πd and πN total cross sections are used to check the validity of the Glauber theory. Substantial disagreements (up to 2 mb) are observed, and the conclusion is drawn that the Glauber theory is inadequate in this momentum range.

2 data tables

No description provided.

No description provided.