We report a measurement of the reaction γγ→K+K−π+π− in both tagged and untagged events at PEP. The cross section rises with invariant γγ mass to about 15 nb at 2 GeV and falls slowly at higher masses. We find clear evidence for the processes γγ→φπ+π− and γγ→K*0(892)Kπ. Upper limits (95% C.L.) of 1.5 and 5.7 nb in the mass range from 1.7 to 3.7 GeV are obtained for φρ0 and K*0K¯*0 production, respectively.
No description provided.
No description provided.
Untagged sample, (non-resonant).
The ρ0-meson spin alignment is studied in p¯p interactions at 22.4 and 12 GeV/c and in the reaction p¯p→2π++2π−+neutrals at 5.7 GeV/c. An essential ρ0-meson spin alignment is observed. The values of the ρ00T element of the ρ0-meson spin-density matrix in the transversity frame are 0.56 ± 0.07, 0.53 ± 0.05, and 0.54 ± 0.04 for the above-mentioned interactions, respectively. An increase of ρ00T with ρ0 transverse momentum is obtained.
No description provided.
No description provided.
No description provided.
We have measured the cross sections for e + e − → e + e − , e + e − → μ + μ − , e + e − → γγ and e + e − → hadrons in an energy scan at center of mass energies between 39.79 and 46.72 GeV in 30 MeV steps. New spinless bosons, whose existence has been postulated as a possible means to explain the anomalously large radiative width of the Z 0 found at the CERN SPS p p collider, are ruled out in the scan region. The data are used to set limits on the couplings to lepton, photon and quark pairs of bosons with masses above 46.72 GeV.
SIG(C=SM) is the Standard Model predicted cross section.
We present a measurement of the production of muon pairs in 194 GeV/c π−-tungsten interactions. A sample of 155,000 events with mass higher than 4.07 GeV/c2 has been used to determine the differential cross-section as a function of the scaling variables\(\sqrt \tau\) andxF.
The cross section ${\rm d}^2\sigma/{\rm d}\sqrt{\tau}{\rm d}x$ integrated over each $\sqrt{\tau}$-$x_F$ cell as a function of $x_F$ for $\sqrt{\tau}$ = 0.21-0.24. The $\Upsilon$ region has been excluded. The integrated luminosity is $L = (8.58 \pm 0.53)\times 10^{37}$ [cm$^2$/W nucleus]$^{-1}$. Note that these data have been re-analysed by the NA10 experimenters using a better estimate of Fermi motion effects (see Tables 11-19 of this record).
The cross section ${\rm d}^2\sigma/{\rm d}\sqrt{\tau}{\rm d}x$ integrated over each $\sqrt{\tau}$-$x_F$ cell as a function of $x_F$ for $\sqrt{\tau}$ = 0.24-0.27. The $\Upsilon$ region has been excluded. The integrated luminosity is $L = (8.58 \pm 0.53)\times 10^{37}$ [cm$^2$/W nucleus]$^{-1}$. Note that these data have been re-analysed by the NA10 experimenters using a better estimate of Fermi motion effects (see Tables 11-19 of this record).
The cross section ${\rm d}^2\sigma/{\rm d}\sqrt{\tau}{\rm d}x$ integrated over each $\sqrt{\tau}$-$x_F$ cell as a function of $x_F$ for $\sqrt{\tau}$ = 0.27-0.30. The $\Upsilon$ region has been excluded. The integrated luminosity is $L = (8.58 \pm 0.53)\times 10^{37}$ [cm$^2$/W nucleus]$^{-1}$. Note that these data have been re-analysed by the NA10 experimenters using a better estimate of Fermi motion effects (see Tables 11-19 of this record).
None
No description provided.
DATA WERE EXTRACTED FROM ADEUT-BREAKUP EVENTS,SEE R=PR D10, 3573 FOR EXAMPLE.
The cross sections for J ψ production have been measured in interactions of 280 GeV μ + on hydrogen and deuterium (H, D) and also in interactions of 250 GeV μ + on iron. The single-nucleon cross sections in iron are found to be larger than those in H, D. The mean ratio of the iron to H, D photoproduction cross sections in the range 60 < v < 200 GeV is 1.45 ±0.12 (statistical) ±0.22 (systematic error). Within the framework of the photon-gluon fusion model, this indicates that the gluon density per nucleon is ∼45% larger in iron than in H, D in the range 0.026 < x < 0.085, on a mass scale Q 2 eff ∼M 2 J ψ .
First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.
First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.
THIS TABLE IS THE RATIO OF THE EFFECTIVE GLUON DISTRIBUTIONS IN IRON AND HYDROGEN(DEUTERIUM) ASSUMING THAT PHOTON-GLUON FUSION IS THE RELEVANT MECHANISM FOR J/PSI PRODUCTION.
The differential cross section of the reactione+e−→e+e− at a c.m. energy of 34.7 GeV has been measured. The result, together with our previously measurede+e−→α+α− data, are compared with the standard model predictions. We obtain for the weak neutral current couplings the valuesgv2=0.09×0.06,ga2=0.38×0.08. A fit of the Weinberg mixing angle gives the valuegv2=0.09×0.06,ga2=0.038×0.08. The data are also used to set limits on possible deviations from the pointlike structure of leptons. An upper limit for thee+e− coupling to a heavy spin 0 boson is also given.
Fully corrected results for Bhabha scattering.
The differential cross section for Bhabha scattering.
??? CONSTANTS ???.
A high-statistics measurement is presented of the cross section for the process e+e−→τ+τ− at s=29 GeV from the MAC detector at PEP. A fit to the angular distribution of our sample of 10 153 events with |cosθ|<0.9 gives an asymmetry Aττ=−0.055±0.012±0.005 from which we find the product of electron and tau axial-vector weak neutral couplings gAegAτ=0.22±0.05.
Data fully corrected up to O(ALPHA**3) radiative effects. Data requested from authors.
Data extrapolated to full acceptance.
No description provided.
Using the Mark-J detector at the high-energy e+e− collider PETRA, we compare the data from hadron production with the complete second-order QCD calculation over the energy region 22 to 46.78 GeV. We determine the QCD parameter Λ=100±30−45+60 MeV which yields the strong-coupling constant αs=0.12±0.02 for s=44 GeV.
No description provided.
Axis error includes +- 0.0/0.0 contribution (DUE TO FRAGMENTATION MODEL).
Narrow states observable through the emission of monoenergetic charged pions have been searched for in p p annihilation at rest in a gaseous hydrogen target where annihilation from atomic angular momentum L = 1 states dominates. No structure is observed. The 5σ upper limit for the production of narrow states in the mass range 1100–1670 MeV is 2 × 10 −3 of all annihilations.
X means a narrow state.