Measurements of the cross section for the production of electron pairs with invariant masses between 4 and 8.7 GeV are presented as a function of the centre-of-mass energy ( s = 28 to s = 62 GeV ) of the colliding proton beams. A significant excess of events is observed in the region 8.7 to 10.3 GeV; these are ascribed to the ϒ(9.5 GeV) resonances and estimates of the production cross sections are given.
Axis error includes +- 40/40 contribution (Due to the uncertainty in efficiency).
Axis error includes +- 40/40 contribution (Due to the uncertainty in efficiency).
We have measured the inclusive electroproduction of positive and negative hadrons in the quark fragmentation region using the streamer chamber at DESY. Data are presented in terms of the variable z p = p / v in the kinematic region 1.8 < W < 2.8 GeV and 0.3 < Q 2 < 1.4 GeV 2 . The positive hadron distributions contain a strong proton component. After subtraction of the proton component and elastic rho events, the distribution (1/ σ tot ) d σ /d z p for positive and negative hadrons agrees well with the corresponding distribution from e + e − annihilation (DORIS data). This behaviour supports the validity of the quark-parton model at surprisingly low Q 2 and W .
No description provided.
We report measurements at the CERN PS of the production cross section of J/ψ(3.1) by 24 GeV protons on hydrogen, carbon, and tungsten.
No description provided.
ASSUME B.R.(E+E-) =0.069.
Electroproduction of hadrons is studied in the kinematic region W < 2.8 GeV and 0.3 < Q 2 < 1.4 GeV 2 using the DESY streamer chamber. Prong cross sections, charged-particle multiplicities and inclusive π − distributions are presented. The average charged multiplicity is found to be independent of Q 2 in the Q 2 range studied here; however it is lower than in photoproduction. The fraction of forward π − is found to be significantly less in electroproduction than in photoproduction. The 〈 p ⊥ 2 〉 for inclusive π − is, for all x values, similar to that found in photoproduction.
No description provided.
No description provided.
No description provided.
The multiplicity distribution of inclusive electron events above 4 GeV cm energy shows two distinct classes of events: two prong no photon and high multiplicity events. If the high multiplicity events are attributed to the semi-leptonic decay of charmed particles the two prong no photon events must come from the weak decay of a different type of particle. The charged K to π ratio was measured for these events. The average number of charged kaons is 0.07 ± 0.06 per two prong event and 0.90 ± 0.18 per multiprong event. Thus the weak current responsible for the low multiplicity events has a small coupling to strange particles.
NUMBER OF CHARGED PARTICLES OBSERVED .EQ. 2.
NUMBER OF CHARGED PARTICLES OBSERVED .GE. 3.
The four cross section components σ U , σ L , σ P and σ I were separated in the reaction γ V + p → π + + n at an electron four momentum transfer of Q 2 = 0.70 GeV 2 and an invariant hadronic mass of 2.19 GeV in the range of t between t min and −0.28 GeV 2 . The longitudinal cross section σ L dominates at small |t| and decreases rapidly with increasing |t|. The data are in rough agreement with the prediction of a generalized Born term model. The resulting value for the pion electromagnetic form factor is F π = 0.42 ± 0.015.
TMIN = 0.024 GEV**2.
No description provided.
The Split Field Magnet facility at the CERN ISR has been used to measure inclusive resonance production in inelastic p-p collisions at a c.m. energy of 53 GeV. The mass spectrum of pairs of oppositely charged hadrons shows a strong correlation, which can be explained as a consequence of dominant vector meson production, accounting for more than 60% of all pions and kaons produced.
No description provided.
No description provided.
No description provided.
None
No description provided.
None
SINGLE CHARGED PARTICLE MOMENTUM DISTRIBUTION.
No description provided.
No description provided.
The reactions π + p giving π 0 Δ ++ (1236), η (549) Δ ++ (1236) and η ′(958) Δ ++ (1236) are studied at 16 GeV/ c . Cross sections, differential cross sections and Δ ++ (1236) spin density matrix elements are presented. The π 0 Δ ++ (1236) differential cross section d σ d t′ indicates a dip towards t ′ = 0 and has a minimum at t ′ ≅ 0.6 GeV 2 . The Δ ++ (1236) spin density matrix elements are consistent with the predictions of the Stodolsky-Sakurai model, except perhaps near the forward direction. For ηΔ ++ (1236), the differential cross section d σ d t′ turns over in the forward direction and presents no further structure. SU(3) sum rules are tested and found to be approximately satisfied. The data agree with factorization of ϱ exchange. The effective A 2 trajectory is calculated and found to be consistent with that reported from the reaction π − p → η n.
No description provided.
NORMALIZED TO THE TOTAL CROSS SECTION OF 49 MUB.
No description provided.