We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
We have studied hadronic events from e+e- annihilation data at centre-of-mass energies of sqrt{s}=172, 183 and 189 GeV. The total integrated luminosity of the three samples, measured with the OPAL detector, corresponds to 250 pb^-1. We present distributions of event shape variables, charged particle multiplicity and momentum, measured separately in the three data samples. From these we extract measurements of the strong coupling alpha_s, the mean charged particle multiplicity
Distribution of Thrust.
Distribution of Thrust Major.
Distribution of Thrust Minor.
We present a test of the flavour independence of the strong coupling constant for charm and bottom quarks with respect to light (uds) quarks, based on a hadronic event sample obtained with the OPAL detector at LEP. Five observables related to global event shapes were used to measure alpha_s in three flavour tagged samples (uds, c and b). The event shape distributions were fitted by Order(alpha_s**2) calculations of jet production taking into account mass effects for the c and b quarks. We find: = 0.997 +- 0.038(stat.) +- 0.030(syst.) +- 0.012(theory) and = 0.993 +- 0.008(stat.) +- 0.006(syst.) +- 0.011(theory) for the ratios alpha_s(charm)/alpha_s(uds) and alpha_s(b)/alpha_s(uds) respectively.
No description provided.
We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.
Determination of alpha_s.
Multiplicity and higher moments.
Thrust distribution.
The hadronic fragmentation functions of the various quark flavours and of gluons are measured in a study of the inclusive hadron production from Z 0 decays with the DELPHI detector and are compared with the fragmentation functions measured elsewhere at energies between 14 GeV and 91 GeV. A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. The result is α s ( M Z ) = 0.124 −0.007 +0.006 (exp) ± 0.009(theory) where the first error represents the experimental uncertainty and the second error is due to the factorization and renormalization scale dependence.
SIG(Q=BQ, Q=CQ, Q=UDS) corresponds to BQ, CQ, and U,D,S quarks fragmentation into charged hadron.
alpha_s was evaluated from the scaling violation of the fragmentation func tions. The data from other experiments are used for the fitting procedure.
We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to\({\mathcal{O}}(\alpha _s^2 ) + NLLA\) QCD calculations, we determineαs(133 GeV)=0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈nch〉=23.40±0.45(stat.) ±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0=3.94±0.05(stat.)±0.11(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.
Determination of alpha_s.
Multiplicity and high moments.
Tmajor distribution.
Three jet events arising from decays of the Z boson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is $$< r >=1.241 pm 0.015 (stat.)pm 0.025 (syst.).$$ Gluon jets are broader and produce fragments with a softer energy spectrum than quark jets of equivalent energy. The string effect has been observed in fully symmetric three jet events. The measured ratio Rγ of the charged particle flow in the qq̅ inter-jet region of the qq̅g and qq̅γ samples agrees with the perturbative QCD expectation. The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. The value for αs(MZ) determined from these data using a QCD prediction with corrections at leading and next-to-leading order is $$←pha_s(M_Z)=0.116pm 0.003 (stat.)pm 03009 (syst.).$$
No description provided.
Durham and JADE algoritms were used.
Jet production in deep inelastic scattering for $120
2+1 jet rate as a function of ycut the jet algorithm cut-off value. Statistical errors only.
Measured values of Lambda-QCD in the MS Bar scheme and alpha_s as a function of Q**2. The second systematic uncertainty is related to the theoretical uncertainties .
Strong coupling constant alpha_s extrapolated to the Z0 mass.
The ratio of the number of W+1 jet to W+0 jet events is measured with the D0 detector using data from the 1992–93 Tevatron Collider run. For the W→eν channel with a minimum jet ET cutoff of 25 GeV, the experimental ratio is 0.065±0.003stat±0.007syst. Next-to-leading order QCD predictions for various parton distributions agree well with each other and are all over 1 standard deviation below the measurement. Varying the strong coupling constant αs in both the parton distributions and the partonic cross sections simultaneously does not remove this discrepancy.
Two values of ALPHA_S corresponds the two different parton distribution functions (pdf) used in extraction of ALPHA_S from the ratio. The dominant systematic error is from the jet energy scale uncertainty.
We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations (EEC’s) and their asymmetry (AEEC’s) in e+e− annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at O(αs2), we obtained αs(MZ2)=0.1184±0.0031(expt)±0.0129(theory) (EEC) and αs(MZ2)=0.1120±0.0034(expt)±0.0036(theory) (AEEC). The EEC result is significantly lower than that obtained from comparable fits using the O(αs2) calculation of Kunszt and Nason.
The data are compared to the predictions of Monte-Carlo. Two values of ALPHA_S are corresponded the two theoretical models used in the comparison.