Date

Comparison of the Particle Flow in $q \bar{q} \gamma$ and $q \bar{q} g$ Events From $e^+ e^-$ Annihilations at {PETRA}

The JADE collaboration Saada, F.Ould ; Allison, J. ; Ambrus, K. ; et al.
Z.Phys.C 39 (1988) 1, 1988.
Inspire Record 260834 DOI 10.17182/hepdata.15623

The particle flow distributions in the event plane of 3-jet\((e^ +e^ -\to q\bar qg)\) and of radiative 2-jet\((e^ +e^ -\to q\bar q\gamma )\) events are compared at a centre of mass energy of 35 GeV. The number of particles in the angular region opposite to the gluon in\(q\bar qg\) events is found to be significantly reduced relative to the number of particles in the region opposite to the hard photon in\(q\bar q\gamma \) events. This depletion is expected from the “string effect” observed in 3-jet events. It can be explained within the framework of QCD as arising from soft gluon interference.

1 data table

Data requested from authors.


OBSERVATION OF psi PRODUCTION IN e+ e- ANNIHILATION AT 29-GeV

Wormser, G. ; Ong, R.A. ; Abrams, G.S. ; et al.
Phys.Rev.D 38 (1988) 1001, 1988.
Inspire Record 260717 DOI 10.17182/hepdata.18617

Inclusive ψ production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. The ψ cross section is found to be 1.1±0.5±0.4 pb. After subtraction of the expected contribution from B decay, an upper limit of 0.02σμμ is obtained for other sources of ψ production.

1 data table

No description provided.


Charm Production in Nonresonant e+ e- Annihilations at s**(1/2) = 10.55-GeV

The CLEO collaboration Bortoletto, D. ; Goldberg, M. ; Holmes, R. ; et al.
Phys.Rev.D 37 (1988) 1719, 1988.
Inspire Record 22954 DOI 10.17182/hepdata.23269

We report results on the differential and total cross sections for inclusive production of the charmed particles D*+, D*0, D0, D+, Ds, and Λc in e+e− annihilations at √s=10.55 GeV. Widely used quark fragmentation models are discussed and compared with the measured charmed-particle momentum distributions. This comparison, as well as that with measurements at other center-of-mass energies, shows the need to take QCD corrections into account and their importance for a correct interpretation of the model parameters. The observed rate of D0 and D+ production is compared to the expected total charm production cross section. We measure the probability of a charmed meson being produced as a vector meson and the D*+ decay branching fraction into D0π+.

14 data tables

No description provided.

No description provided.

No description provided.

More…

Electroweak studies in e+ e- collisions: 12 < s**(1/2) < 46.78 GeV

The MARK J collaboration Adeva, B. ; Anderhub, H. ; Ansari, S. ; et al.
Phys.Rev.D 38 (1988) 2665-2678, 1988.
Inspire Record 274887 DOI 10.17182/hepdata.23272

The Mark J Collaboration at the DESY e+e− collider PETRA presents results on the electroweak reactions e+e−→μ+μ−τ+τ−,μ+μ−γ, and e+e−μ+μ−. The c.m. energy range is 12 to 46.78 GeV. In the μ+μ− and τ+τ− channels the total cross sections and the forward-backward asymmetries are reported and compared with other experiments. The results are in excellent agreement with the standard model. The weak-neutral-current vector and axial-vector coupling constants are determined. The values for muons and τ’s are compatible with universality and with the predictions of the standard model. In the μ+μ−γ channel, all measured distributions, including the forward-backward muon asymmetry, are in excellent agreement with the electroweak theory. Our data on the two-photon process, e+e−μ+μ−, agrees with QED to order α4 over the entire energy range and the Q2 range from 0.7 to 166 GeV2.

9 data tables

SIG(QED) = 86.85/S.

No description provided.

No description provided.

More…

Study of the Reaction $e^+ e^- \to K^+ K^-$ in the Energy Range 1350 $\le \sqrt{s} \le$ 2400-{MeV}

The DM2 collaboration Bisello, D. ; Busetto, G. ; Castro, A. ; et al.
Z.Phys.C 39 (1988) 13, 1988.
Inspire Record 262690 DOI 10.17182/hepdata.15622

Thee+e−→K+K− cross section has been measured from about 750 events in the energy interval\(1350 \leqq \sqrt s\leqq 2400 MeV\) with the DM2 detector at DCI. TheK± form factor |FF±| cannot be explained by the ρ, ω, ϕ and ρ′(1600). An additional resonant amplitude at 1650 MeV has to be added as suggested by a previous experiment.

2 data tables

No description provided.

No description provided.


A STUDY OF THE THREE AND FOUR PHOTON FINAL STATES PRODUCED IN e+ e- ANNIHILATION AT 35-GeV <= S**(1/2) <= 46.8-GeV

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Dainton, J.B. ; et al.
Phys.Lett.B 202 (1988) 154-160, 1988.
Inspire Record 251506 DOI 10.17182/hepdata.29990

The reactions e + e − →γγγ and e + e − →γγγγ have been studied at center-of-mass energies between 35 and 46.8 GeV with an integrated luninosity of about 130 pb −1 accumulated with the CELLO detector at PETRA. The measurements are compared to QED calculations up to third and fourth orders of perturbation theory. Excellent agreement is observed.

1 data table

No description provided.


Measurement of the Spin Density Matrix of $D^*$ Mesons Produced in $e^+ e^-$ Annihilations

The HRS collaboration Abachi, S. ; Akerlof, C. ; Baringer, P. ; et al.
Phys.Lett.B 199 (1987) 585-590, 1987.
Inspire Record 250823 DOI 10.17182/hepdata.30012

Vector mesons produced in the reaction e + e − →V+X at √ s =29 GeV were isolated by observing D ∗ mesons through the D ∗+ → D 0 π + decay. The D 0 decay modes used are D 0 →K3 π , K π , K π , and K π ( π 0 ). The data, which correspond to an integrated luminosity of 300 pb −1 , were collected by the High Resolution Spectrometer at PEP. Spin density matrix elements for the D ∗ meson are measured as a function of the energy sharing variable Z D ∗ . There is no evidence for alignment of D ∗ mesons produced in e + e − annihilation at our energy.

6 data tables

Spin density matrix for D0 --> K PI decay mode.

Spin density matrix for D0 --> K 3PI decay mode.

Spin density matrix for D0 --> K PI (PI0) decay mode.

More…

Production of $\eta$ Mesons in $e^+ e^-$ Annihilations at $\sqrt{s}=29$-{GeV}

The HRS collaboration Abachi, S. ; Akerlof, C. ; Baringer, P. ; et al.
Phys.Lett.B 205 (1988) 111-114, 1988.
Inspire Record 250824 DOI 10.17182/hepdata.29979

Data from e + e − annihilations at 29 GeV have been used to measure the production cross section and fragmentation function of η mesons. The signal is observed in the η → γγ decay channel. The fragmentation for p η >1.5 GeV/ c agrees well with the prediction of the Lund model, whereas the prediction of the Webber model lies above the data. The mean multiplicity is measured to be 〈 n η 〉=0.58±0.10 η mesons per hadronic event, of which 0.51 represents the direct production of η and η ′ mesons in the fragmentation chain.

2 data tables

Statistical errors only.

Extrapolated to full z range using LUND model.


Charged $K^*$ Production in $e^+ e^-$ Annihilations at 29-{GeV}

Abachi, S. ; Baringer, Philip S. ; Bylsma, B.G. ; et al.
Phys.Lett.B 199 (1987) 151-154, 1987.
Inspire Record 22433 DOI 10.17182/hepdata.6521

We report a measurement of the charged K ∗ (892) production in e + e − annihilations at 29 GeV center-of-mass energy. The 300 pb −1 data sample used for this analysis is obtained with the High Resolution Spectrometer at the SLAC storage ring PEP. The total mean multiplicity is measured to be 〈n K ∗± (892) 〉=0.62±0.045±0.04 per hadronic event. Evidence is also given for the production of a charged K 2 ∗ (1430) tensor meson.

6 data tables

Extrapolation to full x-range using Lund model.

Data requested from authors.

Extrapolation to full x-range usisng fragmentation friction predicted by the Webber cluster model.

More…

A Study of Bhabha Scattering at {PETRA} Energies

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 37 (1988) 171, 1988.
Inspire Record 249557 DOI 10.17182/hepdata.45173

We report on high statistics Bhabha scattering data taken with the TASSO experiment at PETRA at center of mass energies from 12 GeV to 46.8 GeV. We present an analysis in terms of electroweak parameters of the standard model, give limits on QED cut-off parameters and look for possible signs of compositeness.

7 data tables

Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).

Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).

Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).

More…