Measurements of neutral pion production at midrapidity in sqrt(s_NN) = 200 GeV Au+Au collisions as a function of transverse momentum, p_T, collision centrality, and angle with respect to reaction plane are presented. The data represent the final pi^0 results from the PHENIX experiment for the first RHIC Au+Au run at design center-of-mass-energy. They include additional data obtained using the PHENIX Level-2 trigger with more than a factor of three increase in statistics over previously published results for p_T > 6 GeV/c. We evaluate the suppression in the yield of high-p_T pi^0's relative to point-like scaling expectations using the nuclear modification factor R_AA. We present the p_T dependence of R_AA for nine bins in collision centrality. We separately integrate R_AA over larger p_T bins to show more precisely the centrality dependence of the high-p_T suppression. We then evaluate the dependence of the high-p_T suppression on the emission angle \Delta\phi of the pions with respect to event reaction plane for 7 bins in collision centrality. We show that the yields of high-p_T pi^0's vary strongly with \Delta\phi, consistent with prior measurements. We show that this variation persists in the most peripheral bin accessible in this analysis. For the peripheral bins we observe no suppression for neutral pions produced aligned with the reaction plane while the yield of pi^0's produced perpendicular to the reaction plane is suppressed by more than a factor of 2. We analyze the combined centrality and \Delta\phi dependence of the pi^0 suppression in different p_T bins using different possible descriptions of parton energy loss dependence on jet path-length averages to determine whether a single geometric picture can explain the observed suppression pattern.
Neutral pion invariant yields as a function of $p_T$ measured in minimum bias and 9 centrality classes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Neutral pion invariant yields as a function of $p_T$ measured in minimum bias and 9 centrality classes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Neutral pion invariant yields as a function of $p_T$ measured in minimum bias and 9 centrality classes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.
The measured correlation $C(\Delta\phi)$ and the dijet correlation $J(\Delta\phi)$ in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Dijet correlations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV.
Dijet correlations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV.
The dependence of transverse momentum spectra of neutral pions and eta mesons with p_T <16 GeV/c and p_T < 12 GeV/c, respectively, on the centrality of the collision has been measured at mid-rapidity by the PHENIX experiment at RHIC in d+Au collisions at sqrt(s_(NN)) = 200 GeV. The measured yields are compared to those in p + p collisions at the same sqrt(s_(NN)) scaled by the number of underlying nucleon-nucleon collisions in d+Au. At all centralities the yield ratios show no suppression, in contrast to the strong suppression seen for central Au+Au collisions at RHIC. Only a weak p_T and centrality dependence can be observed.
Invariant yields at mid-rapidity for $\pi^0$ and $\eta$ in $d$+Au collisions as a function of $p_T$ for different centrality selections.
Invariant yields at mid-rapidity for $\pi^0$ and $\eta$ in $d$+Au collisions as a function of $p_T$ for different centrality selections.
Invariant yields at mid-rapidity for $\pi^0$ and $\eta$ in $d$+Au collisions as a function of $p_T$ for different centrality selections.
The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.
Heavy-flavor decay electrons invariant differential cross-section An additional 10% normalization uncertainty is to add.
Differential charm cross section To obtain this value, the differential "charm-decay" electrons cross-section, integrated over PT>0.4 GeV/c, has been extrapolated down to PT=0 using the spectrum shape predicted by a fixed-order-plus-next-to-leading-log (FONLL)calculation. The contribution from beauty and beauty cascades, estimated to be 0.1 microbarn, has been substracted, and the c->e branching ratio used was 9.5 +- 1.0%.
Total charm cross section To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.
Muon production at forward rapidity (1.5 < |\eta| < 1.8) has been measured by the PHENIX experiment over the transverse momentum range 1 < p_T \le 3 GeV/c in sqrt(s) = 200 GeV p+p collisions at the Relativistic Heavy Ion Collider. After statistically subtracting contributions from light hadron decays an excess remains which is attributed to the semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks. The resulting muon spectrum from heavy flavor decays is compared to PYTHIA and a next-to-leading order perturbative QCD calculation. PYTHIA is used to determine the charm quark spectrum that would produce the observed muon excess. The corresponding differential cross section for charm quark production at forward rapidity is determined to be d\sigmac c^bar)/dy|_(y=1.6)=0.243 +/- 0.013 (stat.) +/- 0.105 (data syst.) ^(+0.049(-0.087) (PYTHIA syst.) mb.
Differential charm cross section at forward rapidity of 1.6 An additional +0.049 -0.087 systematic uncertainty associated with the PYTHIA normalization is not included in the values given.
We determine rapidity asymmetry in the production of charged pions, protons and anti-protons for large transverse momentum (pT) for d+Au collisions at \sqrt s_NN = 200 GeV. The identified hadrons are measured in the rapidity regions |y| < 0.5 and 0.5 < |y| < 1.0 for the pT range 2.5 < pT < 10 GeV/c. We observe significant rapidity asymmetry for charged pion and proton+anti-proton production in both rapidity regions. The asymmetry is larger for 0.5 < |y| < 1.0 than for |y|< 0.5 and is almost independent of particle type. The measurements are compared to various model predictions employing multiple scattering, energy loss, nuclear shadowing, saturation effects, and recombination, and also to a phenomenological parton model. We find that asymmetries are sensitive to model parameters and show model-preference. The rapidity dependence of \pi^{-}/\pi^{+} and \bar{p}/p ratios in peripheral d+Au and forward neutron-tagged events are used to study the contributions of valence quarks and gluons to particle production at high pT. The results are compared to calculations based on NLO pQCD and other measurements of quark fragmentation functions.
High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.
High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.
High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.
Cross sections for mid-rapidity production of direct photons in p+p collisions at the Relativistic Heavy Ion Collider (RHIC) are reported for 3 < p_T < 16 GeV/c. Next-to-leading order (NLO) perturbative QCD (pQCD) describes the data well for p_T > 5 GeV/c, where the uncertainties of the measurement and theory are comparable. We also report on the effect of requiring the photons to be isolated from parton jet energy. The observed fraction of isolated photons is well described by pQCD for p_T > 7 GeV/c.
Direct photon spectra with NLO pQCD calculations for three theory scales, $\mu$ and a comparison to the NLO pQCD calculations for $\mu$ = $p_T$.
Ratio of isolated direct photons to all direct photons from the $\pi^0$-tagging method.
Ratio of isolated direct photons to all direct photons from the $\pi^0$-tagging method.
We present the first statistically meaningful results from two-K0s interferometry in heavy-ion collisions. A model that takes the effect of the strong interaction into account has been used to fit the measured correlation function. The effects of single and coupled channel were explored. At the mean transverse mass m_T = 1.07 GeV, we obtain the values R = 4.09 +/- 0.46 (stat.) +/- 0.31 (sys) fm and lambda = 0.92 +/- 0.23 (stat) +/- 0.13 (sys), where R and lambda are the invariant radius and chaoticity parameters respectively. The results are qualitatively consistent with m_T systematics established with pions in a scenario characterized by a strong collective flow.
K0s invariant mass distribution
Signal to (Signal + Background) ratio for K0s decay length > 6 cm.
Mean KT distribution of K0s pairs
We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at sqrt(s)=200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A_LL data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.
(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).
(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).
The longitudinal double-spin asymmetry ALL in p+p-> jet +X at sqrt(s) = 200 GeV versus jet pT. The uncertainties on the data points are statistical. The gray band indicates the systematic uncertainty from the beam polarization measurement, and the hatched band the total systematic uncertainty. The curves show predictions based on deep-inelastic scattering parametrizations of gluon polarization.
Detailed differential measurements of the elliptic flow for particles produced in Au+Au and Cu+Cu collisions at sqrt(s_NN) = 200 GeV are presented. Predictions from perfect fluid hydrodynamics for the scaling of the elliptic flow coefficient v_2 with eccentricity, system size and transverse energy are tested and validated. For transverse kinetic energies KE_T ~ m_T-m up to ~1 GeV, scaling compatible with the hydrodynamic expansion of a thermalized fluid is observed for all produced particles. For large values of KE_T, the mesons and baryons scale separately. A universal scaling for the flow of both mesons and baryons is observed for the full transverse kinetic energy range of the data when quark number scaling is employed. In both cases the scaling is more pronounced in terms of KE_T rather than transverse momentum.
$v_2$ vs. $p_T$ for charged hadrons for Au+Au collisions.
$v_2$ vs. $p_T$ for charged hadrons for Cu+Cu collisions.
$v_2$ vs. $p_T$ for charged hadrons. divided by $k$ times ($k = 3.1$) the $p_T$-integrated $v_2$ (centrality) for Au+Au and Cu+Cu collisions.