Electron-proton elastic scattering cross sections have been measured at four-momentum transfers between 1.0 and 3.0 (GeV/ c ) 2 and at electron scattering angles between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E and G M were determined. The results indicate that G E ( q 2 ) decreases faster with increasing q 2 than G M ( q 2 ).
Axis error includes +- 2.5/2.5 contribution (Due to counting statisticss, separation of elastic events, beam monitoring, incident energy, scattering angle, proton absorption, solid angle, target length and density).
CONST(NAME=MU) is the magnetic moment.
Approximately 700 events of the reaction K − d → K − π − pp s produced by 5.5 GeV/ c kaons were used to measure the cross section for Kπ elastic scattering in the T = 3 2 state by a Chew-Low extrapolation. The cross section does not exceed 2.1 mb and has no structure for Kπ masses from threshold up to 2.0 GeV.
Chew-Low extrapolation is used for evaluation of the K- P elastic cross section.
None
RELATIVE PRODUCTION OF PION PAIRS WITHOUT RADIATIVE CORRECTIONS.
The reaction e + e − → ω o has been measured by detecting the charged pions of the π + π − π o decay mode of the ω o. A partial decay width of ω o in e + e − : Γ e + e − =0.94±0.18 keV is deduced from this result.
FITTED, BACKGROUND SUBTRACTED, PEAK OMEGA CROSS SECTION, CORRECTED FOR UNOBSERVED DECAYS, IS 1.82 +- 0.34 MUB. TABULATED ASSUMING CENTRAL ENERGY IS 782.6 MEV. VACUUM POLARIZATION AND RADIATIVE CORRECTIONS APPLIED.
None
No description provided.
Two groups of measurements have been made on the elastic scattering of electrons by deuterium; in each case we observed the recoil deuteron instead of the scattered electron. In the first case the spectrometer was set at 45° so that magnetic scattering was unimportant (about 10%) and we deduced the electric form factors of the deuteron. In the second case deuterons were observed at 0°, allowing us to measure directly the magnetic form factor of the deuteron. Form factors of the neutron were deduced from these measurements for the transfer values q2=3, 4, and 5 (F−2). Preliminary results were given in a first paper. Here we also include a description of the experimental setup and discuss relativistic and exchange-current corrections.
No description provided.
No description provided.
No description provided.