We present a study of the reactions p p → p p π 0 , p p → p n π + , and p p → n p π − at 8.8 GeV/ c . Cross sections for the reactions are given, and the main features of the data are shown. The data are compared with the predictions of the Deck model, and evidence is presented for the presence of baryon exchange in the Deck amplitude.
No description provided.
We give cross sections for annihilation and non-annihilation reactions in p p interactions at 8.8 GeV. The non-annihilation data are compared with pp data from the same experiment. We compare data on resonance production and on the impact parameter structure of the final states in p p annihilation and non-annihilation and pp interactions. We investigate the charge structure of the 2 π + 2 π − π 0 final state, and find it consistent with a simple quark model.
NORMALIZED TO A TOTAL AP P CROSS SECTION OF 55.9 MB. ANNIHILATION CROSS SECTIONS.
NORMALIZED TO A TOTAL AP P CROSS SECTION OF 55.9 MB. NON-ANNIHILATION CROSS SECTIONS.
NORMALIZED TO A TOTAL P P CROSS SECTION OF 40.0 MB.
Inclusive cross sections for π 0 , K s 0 , Λ 0 and Λ 0 production in 100, 200 and 360 GeV /c π − p interactions are presented and compared with data at other energies. Invariant cross sections for γ, K s 0 , Λ 0 and Λ 0 production are presented in terms of Feynman x , the rapidity y , and transverse momentum squared, p T 2 . A comparison of the observed γ spectrum is made with the spectra computed assuming that the π 0 momentum distribution is identical to that of the observed π + or π − .
No description provided.
No description provided.
No description provided.
K ∗0 (890) production in the hyperchange exchange reaction π − p → K ∗0 (890) Λ 0 Σ 0 at 10 GeV/ c (28 448 events) is discussed. An amplitude analysis in the t ′ range up to 1 GeV 2 shows that the production mechanism is dominated by natural parity exchange (∼84%). Comparisons are made with predictions from a Regge model and a quark model.
DENSITY MATRIX ELEMENTS IN THE GOTTFRIED-JACKSON SYSTEM ALLOWING FOR COHERENT S-WAVE BACKGROUND TO P-WAVE BREIT-WIGNER K*(892)0 RESONANCE.
No description provided.
The reaction p n → p p π − at 2.98 GeV/ c is studied with high statistics. The dominant Δ −− production is found in the framework of the additive quark model to proceed mainly through unnatural parity exchange in the t -channel. A detailed comparison with the reaction K − p → K ∗0 n confirms, for the dominant part of the cross section, the predictions of the quark model.
No description provided.
MIN(-T) IS 0.015 +- 0.006 GEV**2.
This report reviews the experimental investigation of high energy e + e − interactions by the MARK J collaboration at PETRA, the electron-positron colliding beam accelerator at DESY in Hamburg, Germany. The physics objectives include studies of several purely electromagnetic processes and hadronic final states, which further our knowledge of the nature of the fundamental constituents and of their strong, electromagnetic and weak interactions. Before discussing the physics results, the main features and the principal components of the MARK J detector are discussed in terms of design, function, and performance. Several aspects of the on-line data collection and the off-line analysis are also outlined. Results are presented on tests of quantum electrodynamics using e + e − → e + e − , μ + μ − and τ + τ − , on the measurement of R , the ratio of the hadronic to the point-like muon pair cross section, on the search for new quark flavors, on the discovery of three jet events arising from the radiation of hard noncollinear gluons as predicted by quantum chromodynamics, and on the determination of the strong coupling constant α s .
SUMMARY OF RESULTS FOR R FROM TOTAL OF 2595 HADRON EVENTS. INCLUDES RED = 1046, 1079, 1072 AND 1114.
MEAN THRUST AND THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 13, 17, 22 AND 30 GEV. SOMEWHAT DETECTOR DEPENDENT. INCLUDES RED = 1079 AND 1072. SEE ALSO RED = 1114. ALSO JET ANALYSIS USING FOX-WOLFRAM MOMENTS.
OBLATENESS DISTRIBUTION AT 17 AND 27.4 TO 31.6 GEV. SEE RED = 1146.
A dipion enhancement of mass 1.59 GeV and width 0.23 GeV is observed in the channel γp→π + π − p. The spin-parity of the enhancement is consistent with being 1 − .
No description provided.
We have performed a search for narrow resonances in the center of mass energy range from 29.90 to 31.46 GeV using the e + e − storage ring PETRA at DESY. We present the total cross section for hadron production and an upper limit for resonance production, indicating that no bound state of charge- 2 3 quarks exists in this energy range.
AVERAGE VALUE OF R OVER THE SCAN REGION.
THESE MEASUREMENTS COMBINED WITH PREVIOUS DATA AT 30.0 AND 31.6 GEV REPORTED IN CH. BERGER ET AL., PL 86B, 413 (1979).
A search for narrow resonances in e + e − annihilation at c.m. energies between 29.90 and 31.46 GeV provides no evidence for the existence of such states. The 90% confidence upper limit on the integrated resonance cross section is 38 nb MeV, significantly below the value expected for the lowest (t,t̄) bound state.
No description provided.
We have identified 262 doubly tagged two-photon events. A subset of the data shows an enhancement of 21 events in the inclusive two-photon mass squared distribution between 0.8 and 2.2 GeV 2 . If these events result from spin 2 resonance production then Γ γγ = 9.5 ± 3.9 ± 2.4 keV (statistical and systematic). From another subset of 58 events in which the final state could be classified we determine the two-photon hadron to muon cross section ratio R γγ = 1.1 ± 0.3 ± 0.3.
ELECTRON BEAM ENERGIES OF 3.0 AND 3.6 GEV.