We report the first measurement of the differential cross section on $\phi$-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, $K^+$ and $K^-$ near the theoretical production threshold of 1.57 GeV. The extracted differential cross sections $\frac{d\sigma}{dt}$ for the initial photon energy from 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. This experiment establishes a baseline for a future experimental search for an exotic $\phi$-N bound state from heavier nuclear targets utilizing subthreshold/near-threshold production of $\phi$ mesons.
Differential cross section as a function of ABS(T-TMIN).
We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies/ results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Differential cross sections of the reaction gamma d to K+ Sigma- (p) have been measured with the CLAS detector at Jefferson Lab using incident photons with energies between 1.1 and 3.6 GeV. This is the first complete set of strangeness photoproduction data on the neutron covering a broad angular range. At energies close to threshold and up to E_gamma ~ 1.8 GeV, the shape of the angular distribution is suggestive of the presence of s-channel production mechanisms. For E_gamma > 1.8 GeV, a clear forward peak appears and becomes more prominent as the photon energy increases, suggesting contributions from t-channel production mechanisms. These data can be used to constrain future analysis of this reaction.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.15 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.25 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.35 GeV.. Errors contain both statistics and systematics.
Photoproduction of the cascade resonances has been investigated in the reactions $\gamma p \to K^+ K^+ (X)$ and $\gamma p \to K^+ K^+ \pi^- (X)$. The mass split of the $\Xi$ doublet is measured to be $5.4\pm 1.8$ MeV/c$^2$, consistent with existing measurements. The differential (total) cross sections for the $\Xi^{-}$ have been determined for photon beam energies from 2.75 to 3.85 (4.75) GeV, and are consistent with a possible production mechanism of $Y^*\to K^+\Xi^-$ through a $t$-channel process. The reaction $\gamma p \to K^+ K^+ \pi^-[\Xi^0]$ has also been investigated in search of excited cascade resonances. No significant signal of excited cascade states other than the $\Xi^-(1530)$ is observed. The cross section results of the $\Xi^-(1530)$ have also been obtained for photon beam energies from 3.35 to 4.75 GeV.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.79 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.89 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.99 Gev.
High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the eta-prime measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.
Differential cross section for the W range 1.68 to 1.69 GeV.
Differential cross section for the W range 1.69 to 1.70 GeV.
Differential cross section for the W range 1.70 to 1.71 GeV.
High-statistics measurements of differential cross sections and recoil polarizations for the reaction $\gamma p \rightarrow K^+ \Sigma^0$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($\sqrt{s}$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $K^{+}p\pi^{-}$($\gamma$) and $K^{+}p$($\pi^-, \gamma$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $\sqrt{s}$ coverage. Above $\sqrt{s} \approx 2.5$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($P_\Sigma$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $P_\Sigma$ is of the same magnitude but opposite sign as $P_\Lambda$, in agreement with the static SU(6) quark model prediction of $P_\Sigma \approx -P_\Lambda$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $P_\Sigma$ and $P_\Lambda$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.69 to 1.7 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.7 to 1.71 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.71 to 1.72 GeV.
The exclusive reaction $\gamma p \to p \pi^+ \pi^-$ was studied in the photon energy range 3.0 - 3.8 GeV and momentum transfer range $0.4<-t<1.0$ GeV$^2$. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was about 20 pb$^{-1}$. The reaction was isolated by detecting the $\pi^+$ and proton in CLAS, and reconstructing the $\pi^-$ via the missing-mass technique. Moments of the di-pion decay angular distributions were derived from the experimental data. Differential cross sections for the $S$, $P$, and $D$-waves in the $M_{\pi^+\pi^-}$ mass range $0.4-1.4$ GeV were derived performing a partial wave expansion of the extracted moments. Besides the dominant contribution of the $\rho(770)$ meson in the $P$-wave, evidence for the $f_0(980)$ and the $f_2(1270)$ mesons was found in the $S$ and $D$-waves, respectively. The differential production cross sections $d\sigma/dt$ for individual waves in the mass range of the above-mentioned mesons were extracted. This is the first time the $f_0(980)$ has been measured in a photoproduction experiment.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
High-statistics differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$ have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into $\cos{\theta_{CM}^{\omega}}$ bins of width 0.1. These are the most precise and extensive $\omega$ photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.
Differential cross section for the W range 1.93 to 1.94 GeV.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.